
Unit-1 Compiler Design TEC

CHAKRAVARTY, DEPARTMENT OF CSE 1

Introduction to language processing, Structure of a Compiler, Evaluation of

programming language, The science of building a compiler, Applications of compiler

technology, Programming language basics.

Lexical analysis – Role of lexical analysis, buffering, specifications of tokens,

Recognition of tokens, lexical analyzer generator.

Language processing

1. Q: Define Language processor. Give and explain the diagrammatic representation of

a language processing system.

Q: Explain briefly the need and functionalities of linkers, assemblers and loaders.

Q: Mention the functions of linkers and loaders in preprocessing.

Q: Describe functionality of compilers in language processing.

Q: What are the functions of preprocessing?

Language processor –

 An integrated software development environment includes many different kinds

of language processors such as compilers, interpreters, assemblers, linkers, loaders,

debuggers, profilers.

Language processing system:

Skeleton source program

Absolute Machine code

Preprocessor

A preprocessor produce input to compilers. They may perform the following

functions.

Preprocessor

Compiler

Assembler

Loader/Linker-editor

Source program

Target Assembly program

Relocatable machine code

Library files,

Relocatable Objet

files

Unit-1 Compiler Design TEC

CHAKRAVARTY, DEPARTMENT OF CSE 2

1. Macro processing: A preprocessor may allow a user to define macros

that are shorthands for longer constructs.

Eg: #define PI 3.14

Whenever the PI is encountered in a program, it is replaced by the

value 3.14

2. File inclusion: A preprocessor may include header files into the program text.

Eg: #include<stdio.h>

By this statement, the header file stdio.h can be included and user can make

use of the functions in this header file. This task of preprocessor is called file

inclusion.

3. Rational preprocessor: these preprocessors augment older languages

with moremodern flow-of-control and data structuring facilities.

4. Language Extensions: These preprocessor attempts to add

capabilities to the languageby certain amounts to build-in macro

Compiler

 Compiler is a program that can read a program in one language — the source

language — and translate it into an equivalent program in another language —

the target language;

 If some errors are encountered during the process of translation, then compiler

displays them as error messages.

 The basic model of compiler can be represented as follows:

 Input Output

 Source program Target program

 The compiler takes the source program in high level language such as C,

PASCAL, FORTRAN and converts into low level language or machine level

language such as assembly language.

Assembler

 Programmers found difficult to write or read programs in machine language.

 They begin to use a mnemonic (symbols) for each machine instruction, which

they would subsequently translate into machine language. Such a mnemonic

machine language is now called an assembly language.

Compiler

Unit-1 Compiler Design TEC

CHAKRAVARTY, DEPARTMENT OF CSE 3

 Programs known as assembler were written to automate the translation of

assembly language into machine language.

 The input to an assembler program is called source program, the output is a

machine language translation (object program).

Interpreter

 Interpreter is a program that appears to execute a source program as if it were

machine language.

 Languages such as BASIC, SNOBOL, LISP can be translated using interpreters.

 JAVA also uses interpreter. The process of interpretation can be carried out in

following phases.

1. Lexical analysis

2. Syntax analysis

3. Semantic analysis

4. Direct Execution

Loader/Linker – editor

 Loader is a program which performs two functions, loading and link editing.

 Loading is a process in which the relocatable machine code is read and the

relocatable addresses are altered.

 Then that code with altered instructions and data is placed in the memory at

proper location.

 The job of link editor is to make a single program from several files of

relocatable machine code.

 If code in one file refers the location in another file, then such a reference is

called external reference.

 The link editor resolves such external references also.

Unit-1 Compiler Design TEC

CHAKRAVARTY, DEPARTMENT OF CSE 4

2 Q: Differentiate between Compilers and Interpreters.

Compiler Interpreter

1. It checks the entire high level program

at once.

2. If the program is error free, it translates

the program into object program which is

to be executed by interpreter.

3. The translation process is carried out by

a compiler. So it is termed as compilation.

4. It process the program statements in

their physical input sequence.

5. Processing time is less.

6. Compilers are larger in size and occupy

more memory.

7. It is also called software translation.

8. Eg: C, C++, FORTRAN, PASCAL etc

1. It checks one statement at a time.

2. If the program is error free, it executes

the program and continuous till the last

statement.

3. The translation process is carried out

the interpreter. So it is termed as

interpretation

4. It process according the logical flow of

control through the program.

5. Processing time high.

6. Interpreters are smaller than compilers.

7. It is also called software simulation.

8. Eg: COBOL, LISP, Smalltalk etc

3Q: Describe the phases of compiler. Write the output of all phases for the following

statement, position := initial + rate * 60

Q: Describe analysis-synthesis model of compilation.

Q: Explain the structure of compiler.

 A compiler operates in phases. A phase is a logical interrelated operation that takes

the source program in one representation and produces output in another

representation.

 They communicate with error handlers and symbol table.

 There are two major parts of compilation.

1. Analysis (Machine Independent / Language dependent)

2. Synthesis (Machine Dependent / Language independent)

Analysis

The analysis part consists of three phases.

1. Lexical analysis or Linear analysis or Scanning.

2. Syntax analysis or Hierarchical analysis or Parsing.

3. Semantic analysis.

Unit-1 Compiler Design TEC

CHAKRAVARTY, DEPARTMENT OF CSE 5

Synthesis

The synthesis part consists of three phases.

4. Intermediate code generation.

5. Code optimization.

6. Code generation.

 The phases of compiler are shown in the below figure.

Lexical analysis

 Lexical analyzer reads the source program character by character and groups them

into a stream of tokens.

 Consider the statement, position := initial + rate * 60

When lexical analyzer finds the identifier position, then it generates a token say id.

Hence, the output of lexical analysis is given by,

 id1 := id2 + id3 * 60

where id1, id2 and id3 are the tokens for position, initial and rate respectively.

Unit-1 Compiler Design TEC

CHAKRAVARTY, DEPARTMENT OF CSE 6

Syntax analysis

 In this phase, the tokens generated by the lexical analysis are grouped together to

form a hierarchical structure.

 It is called parse tree or syntax tree.

 A syntax tree is a compressed representation of the parse tree in which the operators

appear as the interior nodes and the operands of an operator are the children.

 For the input string, id1 := id2 + id3 * 60 the parse tree can be generated as follows:

Semantic analysis

 Type checking is an important part of semantic analysis. It checks all the operands

in an expression are type compatible or not.

 Semantic analysis checks the source program for semantic errors.

 Suppose all the identifiers are declared as real but 60 is integer. So it is converted

into real using inttoreal operator. The output is semantic tree.

Intermediate code generation

 This representation is easy to produce and easy to translate into the target program.

 This phase transforms the parse tree into an intermediate language representation

of the source program.

 One of the popular type of intermediate language is called three address code.

 The output of intermediate code generation is given by

temp1 := inttoreal(60)

temp2 := id3 * temp1

temp3 := id2 + temp2

id1 := temp3

Code optimization

 It improves the intermediate code. It reduces the code by removing the unwanted

instructions from the intermediate code.

 This is necessary for faster executing code or less consumption of memory.

 The above intermediate code can be optimized into the following code.

temp1 := id3 * 60.0

id1 := id2 + temp1

 Compiler can reduce the conversion of 60 from integer to real. So, inttoreal

operation can be eliminated.

Unit-1 Compiler Design TEC

CHAKRAVARTY, DEPARTMENT OF CSE 7

Code generation

 In this phase, the target code gets generated. The intermediate code instructions are

translated into sequence of machine instructions.

 The above optimized code can be written using registers.

MOVF id3, R1

MULF #60.0, R1

MOVF id2, R2

ADDF R2, R1

MOVF R1, id1

 The “F” in each instruction instructs to deal with floating point numbers.

Symbol table

 Symbol table is data structure used to store the information about identifiers in the

program.

 The symbol table also stores the information about datatype, its scope and

information about storage of all identifiers.

Error handlers

 Error handler is invoked when a fault in the source program is detected.

 In compilation, each phase detects errors. These errors must be reported to error

handler whose task is to handle the errors so that compilation can proceed.

4 Q: Explain the role of lexical analysis.

Role of lexical analysis

 Lexical analysis is the first phase of compiler.

 It reads the source program from left to right character by character and generates

the sequence of tokens as output.

 A token describes the pattern of characters having the same meaning in the source

program. Token may be identifiers, operators, keywords, numbers, delimiters and

so on.

 Lexical analyzer puts information about identifiers into the symbol table.

 Regular expressions are used to describe the tokens.

 A finite state machine is used in the implementation of lexical analyzer.

Unit-1 Compiler Design TEC

CHAKRAVARTY, DEPARTMENT OF CSE 8

 Then the parser determines the syntax of source program. After receiving “get next

token” command from the parser, the lexical analyzer reads input characters until it

can identify the next token.

 The role of lexical analysis in the process of compilation is shown below:

 Token

Source program

 Apart from token identification, lexical analyzer performs the following functions:

1. It eliminates blank spaces and comments.

2. It communicates with symbol table which stores the information about

identifiers, constants occurred in the input.

3. It keeps track of line numbers.

4. It reports errors while generating the tokens.

5 Q: Explain Lexical analysis Vs Parsing

Lexical analysis Parsing

1. It is one of the phase in compilation

process in which the stream of tokens is

generated by scanning the source code.

2. It is also recognized as scanning phase.

3. The input buffering scheme is used for

scanning the source code.

4. The regular expressions and finite

automata are used in the design of lexical

analysis.

5. The LEX is an automated tool which is

used to generate lexical analyzer.

1. It is one of the phase in the compilation

process in which the stream of tokens is

obtained from lexical analysis phase for

building the parse tree.

2. It is also recognized as syntax analyzing

phase.

3. The top down and bottom up parsing

techniques are used for syntax analysis.

4. The context free grammars are used in

the design of parsing.

5. The YACC tool is an automated tool

which is used to generate syntax analyzer.

Lexical

Analyzer

Symbol table

Parser

Unit-1 Compiler Design TEC

CHAKRAVARTY, DEPARTMENT OF CSE 9

6 Q: Explain about tokens, patterns and lexemes with example.

 Lexical analysis deals with the terms tokens, patterns and lexemes.

 A token describes the pattern of characters having the same meaning in the source

program. Token may be identifiers, operators, keywords, numbers, delimiters and

so on.

 Pattern is a set of rules that describes the token.

 For example, the following are the rules for the valid identifiers.

1. The identifier must begin with alphabet.

2. The only allowed special character in identifier name is underscore. eg:

total_amout

3. The identifier name should not contain any blank spaces. Example: int total

amount is invalid identifier.

4. The identifier name must not be a reserve keyword.

 Lexeme is a sequence of characters in the source program that are matched with the

pattern of token. For example, int, num, choice.

 The following is the example which differentiates lexemes and tokens.

int MAX(int a, int b)

{

 if(a > b)

 return a;

 else

 return b;

}

Lexeme Token

Int Keyword

MAX Identifier

(Operator

Int Keyword

A Identifier

, Operator

int Keyword

B Identifier

) Operator

… …

Unit-1 Compiler Design TEC

CHAKRAVARTY, DEPARTMENT OF CSE 10

 The blank spaces and new line characters can be ignored.

 These stream of tokens will be given to the syntax analyzer.

7 Q: Briefly explain the attributes for tokens.

 Lexical analyzer provides additional information to distinguish between the similar

type of patterns that match the lexeme.

 For example, a pattern “num” match both strings 0 and 1. But the code generator

has to know what it matches exactly.

 Lexical analyzer collects the attributes of tokens as the additional information.

 For example, the tokens and associated attribute values for the FORTRAN

statement

E = M * C ** 2 is given below

<id, pointer to the symbol entry for E>

<assign_op>

<id, pointer to the symbol entry for M>

<mult-op>

<id, pointer to the symbol entry for C>

<exp_op>

<num, integer value 2>

8 Q: Briefly explain about lexical errors.

 If the lexical analyzer discovers the prefix which is not matching the specification of

any token, it invokes an error to get the remedial actions.

 For example, the string if is encountered as fi in a C program,

fi (a = = b)

 A lexical analyzer cannot inform whether fi containing spelling mistake of the

keyword.

 Under some situations, the lexical analyzer is unable to proceed because none of the

patterns for tokens matches a prefix of the remaining input.

 The simplest recovery is to delete the successive characters from the remaining input

until the lexical analyzer can find a well formed token.

9 Q: Explain briefly about input buffering

 Lexical analyzer scans the input string from left to right one character at a time.

 It uses two pointers, begin_ptr (bptr) and forward_ptr (fptr) to keep track of the

portion of the input scanned.

Unit-1 Compiler Design TEC

CHAKRAVARTY, DEPARTMENT OF CSE 11

 Initially both the pointers point to the first character of the input string which is

shown below with the source code inti,j; i = i +1; j = j + 1;

bptr

i n t i , j ; i = i + 1 ; j = j + 1 ;

fptr

 The fptr moves ahead to search for the end of lexeme. As soon as the blank space is

found, it indicates the end of lexeme. In the above example, as soon as fptr found a

blank space, the lexeme “int” is identified.

bptr

i n t i , j ; i = i + 1 ; j = j + 1 ;

fptr

bptr

i n t i , j ; i = i + 1 ; j = j + 1 ;

 fptr

 When fptr finds white space, it ignore and moves ahead. Then both bptr and fptr

are set at next token “i”.

 bptr

i n t i , j ; i = i + 1 ; j = j + 1 ;

 fptr

 Thus, the input character is scanned from secondary storage. But reading in this

way from secondary storage is costly. Hence buffering technique is used.

 A block of data is first read into a buffer and then scanned by lexical analyzer.

 There are two methods used, one buffer scheme and two buffer scheme.

Unit-1 Compiler Design TEC

CHAKRAVARTY, DEPARTMENT OF CSE 12

One buffer scheme:-

 In this scheme, only one buffer is used to store the input string.

 But the problem with this scheme is that if lexeme is very long, then it crosses the

buffer boundary.

 To scan the remaining lexeme, the buffer has to be refilled that makes overwriting

the first part of lexeme.

bptr

i n t i , j ; i = i + 1

 fptr

Two buffer scheme:-

 To overcome the problem of one buffer scheme, two buffers are used to store the

input string.

 The first and second buffers are scanned alternatively.

 When fptr finds EOF of current buffer, filling up of second buffer is started. In the

same way, when second EOF is obtained, then it indicates the end of second buffer.

 Alternatively both the buffers can be filled up until end of the input program and

stream of tokens is identified. The EOF is called sentinel which is used to identify the

end of buffer.

bptr

 buffer1

i n t i , j ; i = i + 1 eof

; j = j + 1 ; eof

 buffer 2

 fptr

10 Q: Explain briefly about Token specification.

 Token type and its attribute uniquely identifies a lexeme.

 Regular expressions are used to specify tokens.

Strings and languages

 An alphabet is a fine non-empty set of symbol denoted by ∑

Eg: ∑ = { 0, 1 } represents binary alphabet.

 String is finite sequence of symbols on an alphabet. € is an empty string.

Unit-1 Compiler Design TEC

CHAKRAVARTY, DEPARTMENT OF CSE 13

Eg: If ∑ = { 0, 1 } then possible strings are 0, 1, 00, 11, 01, 10, …

 Language is a set of strings over some alphabet.

Operations on languages

 Union – If L1 and L2 are languages then L1 U L2 = { S / S € L1 or S €L2 }

 Concatenation – L1.L2 = { S1S2 / S1 € L1 and S2 €L2 }

 Kleen Closure – If R1 is a regular expression then R = R* is also a regular expression

which represents Kleen closure.

Regular grammar

 Regular grammar G is defined as

G = (V, T, P, S) where

V = Set of variables or non-terminals

T = Set of terminals

P = Set of productions

S = Start symbol

 For example,

AaB

B b | €

Then the grammar G is defined as

V = { A, B }

T = { a, b }

P = { AaB , B b | € }

S = { A }

 Regular grammar is a grammar which can be represented by using finite automata.

Regular Expressions (RE)

 RE is used to describe tokens of a programming language.

 RE is defines as follows:

1. is a RE denoting an empty language

2. € (epsilon) is RE denoting a language which has an empty string.

3. ‘ a ‘ is RE denoting a language containing only { a }

4. If R and S are RE, then LR and LS denote language for RE R and S. Then:

i. R + S is RE for language LR U LS

ii. R . S is RE for language LR . LS

iii. R* is RE for language L*R

Unit-1 Compiler Design TEC

CHAKRAVARTY, DEPARTMENT OF CSE 14

11 Q: Explain the procedure for recognition of tokens.

Using token type and Token value:

 For a programming language, there are various types of tokens such as identifier,

keywords, constants and operators and so on.

 The token is usually represented by a pair of token type and token value.

Token type Token value

 The token type tells us the category of token and token value gives us the

information regarding token. The token value is also called token attribute.

 The token value can be a pointer to symbol table in case of identifier and constants.

 The lexical analyzer reads the input program and uses symbol table for tokens.

 For example, consider the following symbol table,

Token Code Value

if 1 -

else 2 -

while 3 -

for 4 -

identifier 5 ptr to symbol table

constant 6 ptr to symbol table

< 7 1

< = 7 2

> 7 3

>= 7 4

!= 7 5

(8 1

) 8 2

+ 9 1

- 9 2

= 10 -

 Consider a program code as,

if (a < 10)

 i = i + 2;

else

 i = i – 2;

 The corresponding symbol table for identifiers and constants will be,

Location counter Type Value

100 identifier a

… … …

105 constant 10

… … …

107 identifier b

… … …

110 constant 2

Unit-1 Compiler Design TEC

CHAKRAVARTY, DEPARTMENT OF CSE 15

 Our lexical analyzer will generate the following token stream

1, (8, 1), (5, 100), (7, 1), (6 , 105), (8, 2), (5, 107), 10, (5, 107), (9, 1) (6, 110),

2 , (5, 107) , 10, (5, 107), (9, 2), (6, 110)

Using transition diagram

 The transition diagram is a directed graph with states drawn as circles (nodes) and

edges representing transitions on input symbols. Edges are the arrows connecting

the states.

 The transition diagram has a start state which indicates the beginning of token and

final state which indicates the end of token.

 The fptr scans the input character by character from left to right.

 For example, Write a regular expression for identifier and keyword and design a

transition diagram for it.

Ans: RE = letter (letter + digit) *

 The installID () checks if lexeme is already in table. If it is not present then it will

install it. The gettoken() examines the lexeme and returns the token name as id or a

reserve keyword.

12 Q: Explain LEX lexical analyzer generator.

 Basically LEX is a unix utility which generates lexical analyzer.

Creating a lexical analyzer with LEX

Unit-1 Compiler Design TEC

CHAKRAVARTY, DEPARTMENT OF CSE 16

The LEX specification file can be created using the extension .l (dot l) . For

example, lex.l file is given to LEX compiler to produce lex.yy.c

This lex.yy.c is a C program which is actually a lexical analyzer program. The

LEX specification file stores the regular expressions for the tokens and the lex.yy.c

file consists of tabular representation of the transition diagram constructed for

regular expression.

Finally lex.yy.cis run through the C compiler to produce object program a.out

which is the lexical analyzer that transforms input stream into a sequence of tokens.

LEX specification

 LEX program consists of three parts

% {

 Declaration section

% }

% %

 Translation rules section

% %

 Auxiliary procedures section

 The declarations section includes declarations of variables, constants and regular

definitions.

 The translation rules of a Lex program are statements of the form :

p1 {action 1}

p2 {action 2}

p3 {action 3}

… …

… …

where each p is a regular expression and each action is a program

fragment describing what action the lexical analyzer should take when a

pattern p matches a lexeme. In Lex the actions are written in C.

 The third section holds whatever auxiliary procedures are needed by the actions. This

means, if any actions requires procedure, then that procedure will be defined.

Unit-1 Compiler Design TEC

CHAKRAVARTY, DEPARTMENT OF CSE 17

13 Q: Explain the evolution of programming languages

 Programming language is helpful in describing what its programs look like (Syntax

of the language) and what its program meaning is (Semantic of the language).

 The first electronic computers evolved in 1940. They performed very less operations.

They were programmed in machine language by sequence of 0’s and 1’s

 The initial step towards development of high level languages started during late

1950’s with the development of FORTRAN, COBOL and LISP.

 Programming languages can be classified into the following ways:

I generation languages Machine language

II generation languages Assembly language

III generation languages HLL like FORTRAN, COBOL, LISP, C,

C++

IV generation languages Languages for specific applications like

SQL for DB queries

V generation languages OPS5

14 Q: Briefly explain the science of building a compiler

 Building a compiler is a challenging task.

 The main job of compiler is to accept the source program of any size and convert

into suitable target program.

 Compilers mainly focus on how to design the correct mathematical model and

choose correct algorithms, keeping generality and efficiency.

 Finite state machines and regular expressions are used to describe the tokens during

lexical analysis of a compiler.

 The objectives of building a compiler is given below:

1. “The Meaning” of the compiled program must be preserved.

2. Optimization should improve programs performance.

3. Time required for compilation should be reasonable.

4. Management of engineering effort is a must.

15 Q: Explain the applications of compiler technology.

1. Implementation of High level programming languages:

 In HLL, the algorithm is expressed by the programmer using a language, and the

job of compiler is to translate the program into the target language.

Unit-1 Compiler Design TEC

CHAKRAVARTY, DEPARTMENT OF CSE 18

 Lower Level Language (LLL) is hard to write and is more error prone. HLL are

easy to write but are less efficient. LLL produce more efficient code.

 The task of optimizing compilers is to improve the performance of the generated

code and offsetting the efficiency produced by high level abstractions.

 Thus compiler optimizations have been developed to reduce the overhead.

2. Optimizations for Computer Architecture:

 There is a demand for new compiler technology due to rapid evolution of computer

architectures. This leads to parallelism and memory hierarchies.

Parallelism

 Parallelism can exist as following levels:

 Instruction level includes execution of multiple operations.

 Processor level. Here different threads of the same applications run on the different

processors.

Memory hierarchies

 They are found in all machines. They consist of several levels of storage with

different speeds and sizes.

 Memory hierarchy can be improved by changing the layout of the data or by

changing the order of instructions accessing the data.

3. Program translation:

 We already know that compiler converts HLL into machine level. The same

technology can be applied to translate between different kinds of languages. Few

important applications of program translation techniques include :

Binary translation – Here the binary code for one machine can be translated to another,

allowing a machine to run program that was originally compiled for another instruction

set.

Hardware synthesis–Hardware – synthesis tools translate register transfer level (RTL)

descriptions automatically into gates, which are then mapped to transistor and finally to

physical layout.

Database query interprets – Database queries consist of predicates containing relational

and Boolean operator. They can be compiled into commands to search the database for

records satisfying that predicate. Eg: Structured Query Language (SQL) is used to

search database.

Unit-1 Compiler Design TEC

CHAKRAVARTY, DEPARTMENT OF CSE 19

4. Software productivity tools

 Dataflow analysis can find errors along all the possible execution paths.

 Dataflow analysis design warns the programmers of all those statements that are

violating a particular category of errors.

 Static analysis has been developed to find errors.

 Therefore, optimizers should not alter the semantics of the program under any

situation.

 Type checking, Bonds checking and memory management tools can be used in order

to detect errors.

16 Q: Write about programming language basics.

In this, important basics related to programming languages like compile time,

run time, static binding, dynamic binding, static scope, keywords like public, private,

protected, dynamic scope, parameter passing techniques – call by value, call by

reference, call by name and finally aliasing. These concepts are based on C, C++ or

Java.

17 Q: What is bootstrapping? Explain.

 Bootstrapping is a process in which simple language is used to translate more

complicated program which in turn may handle for more complicated program.

This complicated program can handle even more complicated program and so on.

 Writing a compiler for any high level language is a complicated process. It takes lot

of time to write a compiler from scratch. Hence simple language is used to generate

target code in some stages.

 To clear understanding bootstrapping technique, consider the following scenario.

 Suppose we want to write a cross compiler for new language X. The implementation

language of this compiler is say Y and the target code being generated is in language

Z. That is we create XYZ.

 Now if existing compiler Y runs on machine M and generates code for another

machine M then it is denoted as YMM,

 Now if we run XYZ using YMM then we get a compiler XMZ.

 That means, a compiler for source language X that generates a target code in a

language Z and which runs on machine M

Unit-1 Compiler Design TEC

CHAKRAVARTY, DEPARTMENT OF CSE 20

 Bootstrap includes the initialization of operating system (OS) of a computer.

Advantages

 It is easier to develop a compiler in the high level language being compiled, backend

of a compiler can be improved.

 It is sufficient for a compiler developer to know only the language being compiled

and it is non-trivial test of the language that is being compiled.

18 Q: Write the differences between phases and pass.

Phase Pass

1. Phase is a logically interrelated

operation which takes the source program

in one representation and produces output

in another representation.

2. The process of compilation is carried

out in various steps. These steps are

referred as phases. The phases of

compilation are lexical analysis, syntax

analysis, semantic analysis, intermediate

code generation, code optimization, code

generation.

3. The phases such as lexical, syntax and

semantic analysis are machine

independent and language dependent. And

the phases such as intermediate code

generation, code optimization, code

generation are machine dependent and

language independent.

1. The number of iterations to complete

the execution is called pass.

2. Various phases are logically grouped

together to form pass. The process of

compilation is carried out in one pass or

two pass.

3. Due to execution of program in passes,

the compilation model can be viewed as

front end and backend model.

Unit-1 Compiler Design TEC

CHAKRAVARTY, DEPARTMENT OF CSE 21

Q3: Flow chart for phases of compiler

Unit-2 Compiler Design TEC

CHAKRAVARTY, ASSOCIATE PROFESSOR, DEPARTMENT OF CSE 1

Syntax analysis – The role of a parser, Context free grammars, Writing a grammar,

Top down parsing, bottom up parsing, Introduction to LR parser.

1 Q: Define parser. What is the role of a parser?

Def:

 A parsing or syntax analysis is a process which takes the input string w and

produces either a parse tree or generates the syntactic errors.

Role of a parser:

 Token parse tree

Source get_next_token
program

 In the process of compilation, the parser and lexical analyzer works together. That

means, lexical analyzer generates tokens to syntax analyzer.

 The parser collects sufficient number of tokens and builds the parse tree as output.

 The job of parser is to report syntax errors and to recover from commonly

occurring errors to continue processing the remainder of the program.

 There are two types of parser, Top down parser and bottom up parser.

 When the parse tree is constructed from root to leaves, then it is said to be top down

parsing.

 When the parse tree is constructed from leaves to root, then it said to be bottom up

parsing.

2 Q: What is Context Free Grammar (CFG)? Explain

Formal definition of CFG:

 Context Free Grammar CFG is defined as

G = (V, T, P, S) where

Symbol table

Lexical

Analyzer
Parser

Error handler

Rest of

compiler

Unit-2 Compiler Design TEC

CHAKRAVARTY, ASSOCIATE PROFESSOR, DEPARTMENT OF CSE 2

V = Set of variables or non-terminals

T = Set of terminals

P = Set of productions

S = Start symbol

 For example,

AaB

B b | €

Then

V = { A, B }

T = { a, b }

P = { AaB , B b | € }

S = { A }

Notational conventions:

1. The following symbols are terminals (T)

 Lower case letters like a, b, c …

 Digits like 0, 1, 2, …

 Operators like +, -, *, / , …

 Punctuation symbols like parentheses, comma and so on.

 Strings like id.

2. The following symbols are non-terminals / variables (V)

 Upper case letters like A, B, C.

 Start symbol is S.

3. The first symbol of the first production is the start symbol.

Derivations:

 There are two types of derivations.

1. Left Most Derivation (LMD) - If a production is applied at each step in a

derivation to the left most variable, then the derivation is said to be left most.

2. Right Most Derivation (RMD) - If a production is applied at each step in a

derivation to the right most variable, then the derivation is said to be right most.

Parse trees

 Parse trees are graphical representations of derivations. The interior nodes are

labelled with non terminals and child nodes are labelled with terminals.

Unit-2 Compiler Design TEC

CHAKRAVARTY, ASSOCIATE PROFESSOR, DEPARTMENT OF CSE 3

Ambiguity

 A grammar is said to be ambiguous grammar if there are two or more possible

left most derivations or right most derivations are constructed for the same input string.

3 Q: Explain about classification of parsing techniques.

 There are two types of parser, Top down parser and bottom up parser.

 When the parse tree is constructed from root to leaves, then it is said to be top down

parsing.

 When the parse tree is constructed from leaves to root, then it said to be bottom up

parsing.

 These parsing techniques work on the following principle.

1. The parser scans the input from left to right and identifies that the derivation is

left most or right most.

2. The parser makes use of production rules for choosing the appropriate

derivation. The different parsing techniques use different approaches in selecting

the appropriate rules for derivation. And finally a parse tree is constructed.

 The following diagram gives the classification of parsing techniques.

Types of parser

Top down

parser

Bottom up

parser

Backtracking Predictive

parser

Shift reduce

parser LR parser

Recursive

Descent parsing

Non Recursive

predictive parsing

SLR parser

LALR parser

CLR parser

Unit-2 Compiler Design TEC

CHAKRAVARTY, ASSOCIATE PROFESSOR, DEPARTMENT OF CSE 4

4 Q: What is RD parser? Explain. What are its advantages and limitations?

Recursive Descent parser (RD parser)

 A parser that uses a set of recursive procedures to recognize its input with no

back tracking is called recursive descent parser.

 It is a top down method of syntax analysis in which set of recursive procedures

are executed to process the output. In this parser, the CFG is used to build the

recursive routines.

Basic steps for the construction of RD parser:

1. The RHS of the production rule is directly converted into program code symbol

by symbol.

2. If the input symbol is a non-terminal, then call to the procedure corresponding to

the non-terminal is made.

3. If the input symbol is a terminal, then it is matched with the lookahead symbol

from the input. The lookahead pointer has to be advanced on matching of the

input symbol.

4. If the production rule has many alternatives, then all these alternatives has to be

combined into a single procedure.

5. The parser should be activated by a procedure corresponding to the start

symbol.

Advantages of RD parser:

1. Recursive descent parsers are simple to build.

2. Recursive descent parsers can be constructed with the help of parse tree.

Limitations or drawbacks of RD parser:

1. Recursive descent parsers are not very efficient as compared to other parsing

techniques. Because RD parses sometimes uses backtracking in few cases.

2. There are chances that the program for RD parser may enter in an infinite loop

for some input.

3. RD parser cannot provide good error messaging.

4. It is difficult to parse the string if lookahead symbol is arbitrarily long.

Unit-2 Compiler Design TEC

CHAKRAVARTY, ASSOCIATE PROFESSOR, DEPARTMENT OF CSE 5

5 Q: Explain the process of eliminating ambiguity with example.

 Sometimes an ambiguous grammar can be rewritten to eliminate the ambiguity.

 For example, we shall eliminate the ambiguity from the following "dangling-else"

grammar:

stmt—>if expr then stmt

| if expr then stm telse stmt

| other

Here "other" stands for any other statement.

 According to this grammar, thecompound conditional statement

ifE1then S1else if E2 then S2 else S3

 The given grammar is ambiguous since the string if E1 then S1 else if E2 t hen S2 else

S3 has the two parse trees shown below.

First parse tree

Second parse tree

 In all programming languages with conditional statements of this form, the

first parse tree is preferred. The general rule is, "Match each else with the

closest unmatched then".

Unit-2 Compiler Design TEC

CHAKRAVARTY, ASSOCIATE PROFESSOR, DEPARTMENT OF CSE 6

 We can rewrite the dangling-else grammar as the following unambiguous grammar.

The idea is that a statement appearing between then and else must be "matched";

stmtmatchedstmt

 | openstmt

matchedstmt if expr then matchedstmt else matchedstmt

 | other

openstmt if expr then stmt

 | if expr then matchedstmt else openstmt

6 Q: What is left factoring? Explain the process of eliminating left factoring with eg.

Left factoring

 Left factoring is a grammar of transformations in which the common parts of

two productions are isolated into a single production. It is suitable for predictive

parsing.

Process of eliminating left factoring

 Any production of the form A αβ1 | αβ2 (where α is common) can be replaced by

the following productions,

A αA1

A1
 β1 | β2

 Left factoring is required because it is difficult to decide which production is to

select either αβ1 or αβ2 to expand A.

 In left factoring, we defer this decision by expanding A to αA1 until we have seen

enough input to make the right choice.

 For example, consider CFG,

S iEtS | iEtSeS

E b

In this grammar, the common part is iEtS. Then after elimination of left factoring,

the productions are

S iEtSS1

S1
eS | €

E b

Unit-2 Compiler Design TEC

CHAKRAVARTY, ASSOCIATE PROFESSOR, DEPARTMENT OF CSE 7

7 Q: Explain the reasons for separating lexical analysis phase from syntax analysis.

 The lexical analyzer scans the input program and collects the tokens from it. On

the other hand, parser builds a parse tree using these tokens. These are two important

activities and these activities are independently carried out by these two phases.

Separating out these two phases has two advantages – Firstly it accelerates the process

of compilation and secondly the errors in the source input can be identified precisely.

8 Q: What are the problems or difficulties in top-down parsing? Explain

The following are the problems.

1. Backtracking.

2. Left recursion.

3. Left factoring.

4. Ambiguity.

Backtracking

 Def: Backtracking is a technique in which for the expansion of non-terminal symbol,

we choose one alternative and if any mismatch occurs, and then we try another

alternative.

 For example,

S x P z

P yw | y

then,

 If for a non-terminal, there are multiple productions beginning with the same input

symbol. We need to try all the alternatives to get the correct derivation.

 In backtracking, we need to move some levels upward inorder to check the

possibilities. This increases lot of overhead in the implementation of parsing.

 Hence it is necessary to eliminate backtracking by modifying the grammar.

Left recursion

 Def: The grammar G is said to be left recursive if it has a non-terminal A such that

there is a derivation A Aα , for some α. Here means, deriving the input in one

or more steps. A denotes non-terminal and α denotes some input string.

Unit-2 Compiler Design TEC

CHAKRAVARTY, ASSOCIATE PROFESSOR, DEPARTMENT OF CSE 8

 If left recursion is in the grammar, then it causes a top down parser to go into an

infinite loop. This is shown in the following figure.

 Thus, expansion of A causes further expansion of A and due to generation of A, Aα,

Aαα, Aααα, … the input pointer will not be advanced. This causes major problem in

top down parsing.

 Hence, it is necessary to eliminate left recursion by modifying the grammar.

Left factoring

 Basically left factoring is used when it is not clear that which of the two alternatives

is used to expand the non-terminal.

 With left factoring, we may able to take a right decision by rewriting the

productions.

 In general, if A αβ1 | αβ2(where α is common) then it is not possible to take a

decision whether to choose first rule or second.

 Hence, it is necessary to eliminate left factoring by modifying the grammar.

Ambiguity

 Def: The grammar G is said to be ambiguous grammar if it generates more than one

parse tree for the sentence of a language L(G)

 The ambiguous grammar is not desirable in top down parsing.

 Hence it is necessary to eliminate ambiguity by modifying the grammar.

9 Q: Explain about Handle pruning.

 Handle is a substring of string w that matches the right side of production which

when reduced to non-terminal on the left side of the production, represents one step

of the reverse right most derivation.

Unit-2 Compiler Design TEC

CHAKRAVARTY, ASSOCIATE PROFESSOR, DEPARTMENT OF CSE 9

 If there is a production A β then β is said to be handle since it can be reduced to

A in the string αβw.

 Reducing β to A in αβw is said to be pruning the handle. Handle pruning is nothing

but reducing the handle by non-terminal which is towards the left of the production.

 Consider the grammar, E E + E

E id

Now take the string id + id + id and the right most derivation is,

 E ----->E + E

 E -----> E + E + E

 E -----> E + E + id

 E -----> E + id + id

 E ----->id + id + id

The underline strings are called handles.

Right sentential form Handle Production

id + id + id id E id

E + id + id id E id

E + E + id id E id

E + E + E E + E E E + E

E + E E + E E E + E

E

 Thus bottom up parser is essentially a process of detecting handles and using them

in reduction. This process is called handle pruning.

10 Q: Describe about Shift-Reduce parser

 Shift reduce parser attempts to construct parse tree from leaves to root. Thus it

works on the same principle of bottom up parser.

 Shift reduce parser requires the following data structures:

1. The input buffer, storing the input string.

2. Stack, for storing and accessing LHS and RHS of rules.

 The initial configuration of shift reduce parser is shown below:

Stack Input buffer

Unit-2 Compiler Design TEC

CHAKRAVARTY, ASSOCIATE PROFESSOR, DEPARTMENT OF CSE 10

 This parser performs following basic operations:

1. Shift : Moving the symbols from input buffer to stack. This action is called shift.

2. Reduce :If the handle appear on the top of stack then reduce it by appropriate

rule. That means, RHS of the rule is popped and LHS is pushed in. This action is

called reduce.

3. Accept : If stack contains only start symbol and input buffer is empty at the

same time then the action is called accept. When accept state is obtained in the

process of parsing then it means a successful parsing is done.

4. Error : A situation in which parser cannot either shift or reduce the symbols, it

cannot even perform the accept action is called as error.

11 Q: Explain conflicts during shift reduce parsing.

 When shift reduce parser is applied to some context free grammar, it leads to some

conflicts. The conflicts are,

1. Shift / Reduce conflict :

The parser even after knowing the entire stack contents and the next input

symbol,

cannot decide whether to shift or reduce. This is called as shift/reduce conflict.

2. Reduce / Reduce conflict :

The parser knowing entire stack contents and the next input symbol, cannot

decide which reductions to use. This is called reduce/reduce conflict.

 For example, consider dangling-else grammar,

stmt if expr then stmt

 | ifexpr then stmt else stmt

 | other

where “other” stands for any other statements.

 When shift reduce parser is applied to this grammar, we reach the configuration

Stack Input

 … ifexpr then stmt else … $

 Under this configuration, we cannot tell whether “if expr then stmt” is handle or

not. This leads the parser confusion whether to shift else or reduce the stack top

element. Hence, there is a shift/reduce conflict.

Unit-2 Compiler Design TEC

CHAKRAVARTY, ASSOCIATE PROFESSOR, DEPARTMENT OF CSE 11

 Another conflict occurs is when we have a handle but stack contents and the next

input symbol are not sufficient to determine which production should be used in a

reduction. This is called reduce/reduce conflict.

12 Q: What are LR parsers? Explain briefly.

 This is the most efficient method of bottom up parsing which can be used to parse

large class of context free grammars. This method is also called LR(k) parsing. Here,

L stands for left to right scanning.

R stands for right most derivation in reverse.

k is number of input symbols. When k is omitted, k is assumed to be 1.

 The LR(1) can also be written as LR.

 The following are the types of LR parsers.

1. Simple LR (SLR) parser.

2. Canonical LR (CLR) parser.

3. Look Ahead LR (LALR) parser.

 The relationship among these parsers is expressed as,

SLR ≤ LALR ≤ CLR

Structure of LR parser

 The structure of all these same. They consists of stack, input buffer, output stream, a

driver program and a parsing table consists of two columns, action and goto.

 All LR parsers have the same driver program but the contents of the parsing table

changes.

 The stack contains states in addition to the grammar symbols. The contents of stack

are S0A1S1A2S2A3…AmSm where A is the grammar symbol and S is the state symbol.

Unit-2 Compiler Design TEC

CHAKRAVARTY, ASSOCIATE PROFESSOR, DEPARTMENT OF CSE 12

 The driver program takes the current input from the input buffer and the state

symbol on the top of stack to access the corresponding entry in the parsing table to

determine the shift reduce decisions.

 The parsing table consists of two parts, action and goto. The entry action [Sm, a] in

the action column contains one of the following values:

1. Shift to state Si.

2. Reduce by production A α of the grammar.

3. Accept the input.

4. Error recovery.

 The arguments to goto function is a state Si on top of the stack and a grammar

symbol A and returns the new state Sj.

LR parsing algorithm

 The LR parser driver program initializes the stack with S0 and input buffer contains

the input string as w$. The driver program takes the state Sm on top of the stack and

current input symbol ai and consult the parsing action table entry, action [Sm , ai].

 Perform one of the moves depending upon the resulted action.

1. If action [Sm , ai] = Si , it pushes ai then Si on top of the stack and advances the

pointer to next input symbol and continues.

2. If action [Sm , ai] = riie reduce be using A α, it pops 2r symbols from the stack

where r = length(α). And pushes A then goto [Si, A] on top of the stack and

continues.

 If action [Sm , ai] = accept, it stops and announces the successful parsing.

 If action [Sm , ai] = error, it calls an error recovery routine.

Unit-2 Compiler Design TEC

CHAKRAVARTY, ASSOCIATE PROFESSOR, DEPARTMENT OF CSE 13

13 Q: Discuss in details model of LR parser. (OR) Explain the construction of SLR

parsing table.

It is the weakest of the three parsers but it is easiest to implement. The parsing

can be done as follows:

Definition of LR(0) items and related terms:

1. The LR(0) item for grammar G is production rule in which symbol . (dot) is inserted

at some position in RHS of the rule. For example,

 S .ABC

 S A.BC

 S AB.C

 S ABC.

The production S € generates only one item S .

2. Augmented grammar – If a grammar G is having start symbol S then augmented

grammar is a new grammar G1 in which S1 is a new start symbol such S1
 S. The

purpose of this grammar is to indicate the acceptance of input. That is, when parser is

about to reduce S1
S, it reaches to acceptance state.

3. Kernel items – It is the collection of items S1
 . S and all the items whose dots are

not at the left most end of RHS of the rule.

Unit-2 Compiler Design TEC

CHAKRAVARTY, ASSOCIATE PROFESSOR, DEPARTMENT OF CSE 14

Non kernel items – The collection of all the items in which .are at the left end of RHS of

the rule.

4. Function of closure and goto – These are two important functions required to create

collection of canonical set of items.

Closure operation:-

For a context free grammar G, if I is the set of items then the function closure(I)

can be constructed using following rules.

1. Consider I is a set of canonical items and initially every item I is added to closure(I).

2. If rule A α.Bβ is a rule in closure(I) and there is another rule for B such as B γ

then,

 closure(I) : A α.Bβ

 B .γ

This rule has to be applied until no more new items can be added to closure(I).

goto operation:-

The function goto can be defined as follows:

 If there is a production A α.Bβ then goto(Aα.Bβ, B) = A αB.β That

means, simply shifting of . (dot) one position ahead over the grammar symbol (may be

terminal or non-terminal). The rule Aα.Bβ is in I then the same goto function can be

written as goto(I,B)

5. Viable prefix – It is the set of prefixes in the right sentential form of production A

α. This set can appear on the stack during shift/reduce action.

Unit-2 Compiler Design TEC

CHAKRAVARTY, ASSOCIATE PROFESSOR, DEPARTMENT OF CSE 15

14 Q: Write the differences between LR and LL parsers (OR) LR and predictive

parsers.

LR parsers LL parsers

1. These are bottom up parsers.

2. This is complex to implement.

3. For LR(1), the first L means the

input is scanned from left to right.

The second R means it uses

rightmost derivation in reverse for

the input string. The number 1

indicates that one lookahead

symbol to predict the parsing

process.

4. These are efficient parsers.

5. It is applied to the large class of

programming languages.

1. These are top down parsers.

2. This is simple to implement.

3. For LL(1), the first L means the

input is scanned from left to right.

The second L means it uses

leftmost derivation for the input

string. The number 1 indicates

that one lookahead symbol to

predict the parsing process.

4. These are less efficient.

5. It is applied to small class of

programming languages.

Unit-3 Compiler Design TEC

CHAKRAVARTHY, ASSOCIATE PROFESSOR, DEPARTMENT OF CSE 1

More powerful LR parser (LR(1), LALR), Using ambiguous grammars, Error recovery

in LR parsing, Syntax Directed Translation Definition, Evaluation orders for SDDs,

Applications of SDTS, Syntax Directed Translation Schemes

More powerful LR parser

1 Q: Write the algorithm for constructing CLR parsing table.

Algorithm – Construction of CLR parsing table

Input – Augmented grammar G1

Output – CLR parsing table

Method

1. Construct C = { I0, I1, …In}, the collection of LR(1) items.

2. State I of the parser is constructed from I i. The parsing action for state I is

determined as shown below:

a) If [A α . aβ, b] is in I iand goto(I i, a) = Ij, then set action[i,α]=Shift j

where a=terminal.

b) If [Aα. , a] is in I I& A ≠ S1 , then set action[I,a]=reduce(Aα.)

c) If [S1
 S. , $] is in Ii then set action[I,$]=accept

The grammar is not CLR(1) LR(1) if there exists any confliction action after

applying rules 2(a), 2(b), 2(c).

3. The goto transition for state I are constructed for all non-terminals A using the

rule: if goto(Ii , A) = Ijthen goto[I,A]=j

4. All the entries not defined by rules 2 and 3 are error entries.

5. [S1
 .S, $] is the initial state of the parser that is constructed from the set of

items.

Error recovery in LR parsing

2 Q: Explain Error recovery in LR parsing.

 Error is detected by LR parser after constructing the parsing “action” table and

finds an error entry. “goto” table is never consulted for detecting errors. If there exists

invalid entry in “action” table, then error is announced by the LR parser. CLR(1)

parser detects error earlier than SLR or LALR parser.

There are two modes for error recovery in LR parsing.

1. Panic mode error recovery.

2. Phrase level error recovery.

Unit-3 Compiler Design TEC

CHAKRAVARTHY, ASSOCIATE PROFESSOR, DEPARTMENT OF CSE 2

1. Panic mode error recovery

 The stack is checked from top to bottom until as state P with goto on non-

terminal B is found. After this, zero or more input symbols are removed until symbol

‘b’ is found. Then the parser will push the state goto(P,B) and gets back to normal

parsing. There could be more than one yield for the non-terminal B. Thus, this method

tries to isolate or remove the phrase containing an error. (Syntactic error).

2. Phrase-level error recovery

 Phrase level error recovery uses the strategy of checking the possible

programmer errors list (based on the language) to decide what could have been the

reason for the occurrence of an error.

 After deciding the reason for error, a procedure can be constructed to handle the

error. These procedures may cause an insertion, deletion of input symbols. However, we

must be careful that the procedure used should not,

a) Enter into an infinite loop.

b) Cause a state that is already reached successfully to be popped off.

3Q: Write the comparisons of LR parsers.

SLR parser CLR parser LALR parser

1. It is easier to implement.

2. The table obtained is

smaller in size.

3. It uses FOLLOW

function.

4. It can handle only few

classes of grammar.

5. It is the least powerful

parser.

6. Before announcing

error, it may make several

reductions. But it never

shift erroneous input

symbol onto the stack.

1. It is expensive in terms

of time and space.

2. The table obtained is

larger in size.

3. It uses FIRST function.

4. It can handle large

classes of grammar.

5. It is the most powerful

parser.

6. It can detect syntactic

error as soon as possible

while scanning the input

from left to right.

1. It is expensive in terms

of time and space.

2. The table obtained is

same as of SLR parser.

3. It also uses FIRST

function.

4. It can handle classes of

grammar than SLR.

5. It lies between SLR and

CLR parsers.

6. It behaves like SLR.

Unit-3 Compiler Design TEC

CHAKRAVARTHY, ASSOCIATE PROFESSOR, DEPARTMENT OF CSE 3

Syntax Directed Definition –SDD

4 Q: Explain about SDD or SDT – Syntax Directed Translation.

Syntax Directed Definitions

 Syntax Directed Definition is a context free grammar with semantic rules attached

to the productions. The semantic rules define values for attributes associated with

the non-terminal symbols of the production.

 SDD is a CFG which consists of attributes and rules.

i) Attributes – They are associated with grammar symbol.

ii) Rules – They are associated with productions.

 For example, if X is grammar symbol and ‘b’ is one of its attributes, then X.b

denotes the value of ‘b’ at a particular parse tree node labeled as ‘X’. Attribute can

be number, types table references or strings.

 The following are the two types of attributes for non-terminals.

1. Synthesized attributes.

2. Inherited attributes.

Non terminals

 Synthesized attribute Inherited attribute

Synthesized attribute

 An attribute is synthesized if all its dependencies point from child to parent in the

parse tree.

 The value of synthesized attribute at a node is computed from the values of

attributes at the children of that node in the parse tree.

 Synthesized attribute for a nonterminal S at the parse tree with node N is defined by

a semantic rule with production at N.

 Here S is the head of the production.

Inherited attribute

 The value of inherited attribute is computed from the values of attributes at the

siblings and parent of that node.

 Inherited attribute for nonterminal A at the parse tree with node N is defined by a

semantic rule associated with the production at the parent node N.

Unit-3 Compiler Design TEC

CHAKRAVARTHY, ASSOCIATE PROFESSOR, DEPARTMENT OF CSE 4

The following example shows the SDD for a simple desk calculator, ‘n’ is end marker.

In SDD, each of the non-terminals or variables consists of a single synthesized attribute

‘val’.

SNO PRODUCTION SEMANTIC RULE

1.

2.

3.

4.

5.

6.

7.

L E n

E E + T

E T

T T* F

T F

F (E)

F digit

L.val = E. val

E.val = E.val + T.val

E.val = T.val

T.val = T.val * F.val

T.val = F.val

F.val = E.val

F.val = digit.lexvalue

Evaluation orders for SDDs

5 Q: Explain about evaluation orders for SDDs.

 The useful tool used for determining an evaluation order for the attribute instances

in a given parse tree is “Dependency graph”. Annotated parse tree indicates

attributes values and dependency graph helps to determine how those values can be

computed.

Dependency graph

 The directed graph that represents the interdependencies between synthesized and

inherited attributes at nodes in the parse tree is called dependency graph.

 Dependency graph indicates the flow of information among the attribute instances

in a particular parse tree. If an edge exists from one attribute instance to another, it

means that the value of the first is needed to compute the second.

For example,

E E + T is the production and E.val = E1 + T.val is semantic rule. Then the

corresponding dependency graph will be shown below.

Step 1

First let us consider the parse tree for E E + T

Unit-3 Compiler Design TEC

CHAKRAVARTHY, ASSOCIATE PROFESSOR, DEPARTMENT OF CSE 5

Step 2

The dependency graph for synthesized attribute (ieval) at N is,

The synthesized attribute ‘val’ at N is computed using the values of ‘val’ at two children

ie E and T. Here dotted lines indicates parse tree edges and solid lines indicates

dependency graph edges.

 The following are the cases of different kinds of inherited dependencies.

Case 1

Case 2

Case 3

 Dependency graphs are helpful in checking the possible orders that can be used to

evaluate the attributes at various nodes of a parse tree.

S – attributed definitions

 The syntax directed definition SDD that uses synthesized attributes is called S-

attributed definition.

 In a parse tree, the semantic rule at each node is evaluated for annotating

(computing) the S-attributed definition.

Unit-3 Compiler Design TEC

CHAKRAVARTHY, ASSOCIATE PROFESSOR, DEPARTMENT OF CSE 6

 This process is bottom up ie from leaves to the root.

 For example, let us take the input string 5 * 6 + 7 for computing S-attributed

definition (Syntax tree, Parse tree, Annotated parse tree)

Unit-3 Compiler Design TEC

CHAKRAVARTHY, ASSOCIATE PROFESSOR, DEPARTMENT OF CSE 7

L – attributed definitions

 If there exists attributes associated with a production body, dependency graph edges

that goes from left to right but not from right to left. Then they are called as

L-attributed definitions.

 Each attribute can be either Synthesized or Inherited, but with the following rules:

If there is a production of the form Y X1X2 . . . Xn, and if there exists inherited

attribute Xi.b computed by a rule associated with this production. Then use the

following:-

a) Inherited attributes associated with the head Y

b) Either inherited or synthesized attributes associated with the occurrences of

symbols X1X2 . . . Xi – 1 located to Xi’s left.

c) Synthesized or Inherited attributes associated with these occurrences of Xi itself,

but there should not be cycles in the dependency graph formed by the attributes

of this Xi.

 For example, The L-attributes are given in the following table.

T FT1 T1.inh = F.val

T1
*FT1 T1.inh = T1.inh * F.val

Syntax Directed Translation (SDT)

 SDT is defined as a method for compiler implementation where the source language

translation is completely driven by the parser.

 Here the parsing process and parse tree are used to direct semantic analysis and the

translation of the source program.

 SDT scheme is CFG with program fragments called semantic actions, embedded

with in production bodies.

For example,

 SDD production Semantic rules

SDD

1. TT1*F T.val = T1 .val * F.val

2. TF T.val = F.val

3. F digit F.val = digit.lexval

 SDD production Semantic rules

SDT

1. TT1*F { T.val = T1 .val * F.val ; }

2. TF { T.val = F.val ; }

3. F digit { F.val = digit.lexval ; }

Unit-3 Compiler Design TEC

CHAKRAVARTHY, ASSOCIATE PROFESSOR, DEPARTMENT OF CSE 8

 SDTs are implemented during parsing without building a parse tree.

1) S-attributed SDD is based on LR-parsing table grammar.

2) L-attributed SDD is based on LL-parsing table grammar.

Applications of SDT

6 Q: Explain the applications of SDT (OR)

Explain about

a) Construction of syntax trees

b) The structure of a Type

Construction of Syntax trees

 The syntax tree is an abstract representation of the language constructs.

 The syntax trees are used to write the translation routines using syntax directed

definitions.

 Constructing syntax tree for an expression means translation of expression into

postfix form.

 The following functions are used in syntax tree for the expression.

1. mknode (op, left, right)

This function creates a node with the field operator having operator as label, and

the two pointers to left and right.

2. mkleaf (id, entry)

This function creates an identifier node with label “id” and a pointer to symbol

table is given by “entry”.

3. mkleaf (num, val)

This function creates a node for number with label “num” and “val” is for the

value of that number.

 For example, construct the syntax tree for the expression x * y – 5 + z

Step 1 – Convert the expression from infix to postfix x y * 5 – z +

Step 2 – Make use of the functions mknode(), mkleaf(id, ptr) and mkleaf(num,

val)

Step 3–The sequence of function calls is given.

Unit-3 Compiler Design TEC

CHAKRAVARTHY, ASSOCIATE PROFESSOR, DEPARTMENT OF CSE 9

Step 1:

Let us consider the given infix expression x * y – 5 + z and the corresponding syntax

tree is,

The postfix expression is x y * 5 – z +

Step 2:

Symbol Operation

x P1 = mkleaf(id, ptr to entry x)

y P2 = mkleaf(id, ptr to entry y)

* P3 = mknode(*, P1 , P2)

5 P4 = mkleaf(num, 5)

- P5 = mknode(-,P3 , P4)

z P6 = mkleaf(id, ptr to entry z)

+ P7 = mknode(+, P5 , P6)

Step 3:

Unit-3 Compiler Design TEC

CHAKRAVARTHY, ASSOCIATE PROFESSOR, DEPARTMENT OF CSE 10

The structure of Type

Inherited attributes are useful when the structure of the parse tree differs from

the abstract syntax of the input. Then attributes can be used to carry information from

one part of the parse tree to another.

For example, In C, the type int[2][3] can be read as, "array of 2 arraysof 3 integers."

The corresponding type expression array(2, array(3, integer)) isrepresented by the tree.

 array

 2 array

 3 integer

Syntax Directed Translation (SDT) Schemes

7 Q: Explain SDT schemes.

 SDTs are implemented during parsing without building a parse tree.

a) S-attributed SDD is based on LR-parsing table grammar.

b) L-attributed SDD is based on LL-parsing table grammar.

Postfix Translation Schemes

Postfix SDTs are SDTs with all actions at the right ends of the production bodies. For

example, let us construct postfix SDT for desk calculator.

1.

2.

3.

4.

5.

6.

7.

L E n

E E + T

E T

T T* F

T F

F (E)

F digit

{ print (E. val); }

{ E.val = E.val + T.val ; }

{ E.val = T.val ; }

{ T.val = T.val * F.val ; }

{ T.val = F.val ; }

{ F.val = E.val ; }

{ F.val = digit.lexvalue ; }

The above grammar is LR and SDD is S-attributed.

Unit-3 Compiler Design TEC

CHAKRAVARTHY, ASSOCIATE PROFESSOR, DEPARTMENT OF CSE 11

Parser stack implementation of postfix SDTs

 State / grammar symbol Synthesized attributes

 : :

 X X.x

 Y Y.y

TOP Z Z.z

 A stack is being used by the bottom up parser to hold information of the parsed

subtrees. During LR parsing, postfix SDTs can be implemented by executing the actions

when reductions occur. Postfix SDTs are implemented by considering the attributes of

each grammar on the stack in a place where grammar symbol is found during

reduction.

 The above table contain three grammar symbols XYZ. They are to be reduced

based on the production A XYZ. Here, X.x is one attribute of X and so on.

Eliminating left recursion from SDTs

 During grammar transformation, the actions are treated as if they were terminal

symbols. This preserves the order of the terminals in the generated string.

 In order to eliminate left recursion if

A Aα | β then

replace them by following productions,

 A βA1

 A1
 αA1 | €

 For example, E E + T | T is left recursive. Then the productions after elimination

of left recursion are

E TE1

E1
 +TE1| €

Unit-4 Compiler Design TEC

CHAKRAVARTHY, ASSOCIATE PROFESSOR, DEPARTMENT OF CSE 1

Intermediate code generation – Variants of syntax trees, Three address code, Types and

declarations, Translation of expressions, Type checking, Control flow, Back patching.

Variants of Syntax trees

1 Q: Explain briefly about variants of syntax trees.

 Syntax tree consists of nodes and children.

i) Nodes – They represent constructs in the source program.

ii) Children – They represent the meaningful components of a construct.

Directed Acyclic Graphs (DAG) for expressions (OR) Procedure for constructing DAG

 In a given expression, the common sub-expressions (sub-expressions occurring more

than one time) are identified by Directed Acyclic Graph (DAG)

 DAG and syntax tree construction is similar.

 The difference between them is : a node N in DAG can have more than one parent if

N represents a common sub-expression. But in case of syntax tree, the common sub-

expression would be represented repeatedly as many times the sub-expression

appears in the original expression.

 For example, let us construct DAG for the expression:

e * (b – c) + (b – c) * a

Here, expression (b – c) is repeated twice, called common sub-expression.

Step 1

First let us construct DAG for the common sub-expression, (b –c)

Step 2

Construct DAG for e * (b – c)

Unit-4 Compiler Design TEC

CHAKRAVARTHY, ASSOCIATE PROFESSOR, DEPARTMENT OF CSE 2

Step 3

Again no need to construct DAG for (b – c). Hence consider (b – c) * a

Step 4

Finally draw DAG for the expression e * (b – c) + (b – c) * a

 The steps for constructing DAG are as follows.

Symbol Operation

b P1 = mkleaf(id, ptr to entry b)

c P2 = mkleaf(id, ptr to entry c)

- P3 = mknode(-, P1 , P2)

e P4 = mkleaf(id, ptr to entry e)

* P5 = mknode(*, P3 , P4)

a P6 = mkleaf(id, ptr to entry a)

* P7 = mknode(*, P3, P6)

+ P8 = mknode(*, P5 , P7)

Unit-4 Compiler Design TEC

CHAKRAVARTHY, ASSOCIATE PROFESSOR, DEPARTMENT OF CSE 3

 Consider the following SDD to produce syntax tree or DAG

SNO PRODUCTION SEMANTIC RULE

1.

2.

3.

4.

5.

6.

E E + T

E E - T

E T

T (E)

T id

T digit

E.Node = new Node (+, E.Node, T.Node)

E.Node = new Node (-, E.Node, T.Node)

E.Node = T.Node

T.Node = E.Node

T.Node = new Lean(id, id.entry)

T.Node = new Leaf(digit, digit.val)

Value Number method for constructing DAGs

 Array of records can be used to store nodes of syntax trees or DAGs.

 Each row of the array represents one record, and therefore one node.

 The first field is an operation code which indicates the label of a node. This is

present in each record.

 Leaves consist of one additional field to hold the lexical value (either a pointer to

symbol table or constant).

 Interior nodes consist of two additional fields to represent the left and right child.

Unit-4 Compiler Design TEC

CHAKRAVARTHY, ASSOCIATE PROFESSOR, DEPARTMENT OF CSE 4

2 Q: Explain about Three address code (TAC or 3AC)

 TAC is a sequence of statements of the general form

x = y op z

Where x,y,z are names, constants or compiler generated temporaries. op stands for

any operator such fixed or floating point arithmetic operator or logical operator on

Boolean valued data. Here three address refers to three addresses ie addresses of x, y

and z.

 For example, if x = a + b * c then the TAC is,

t1 = b * c

t2 = a + t1

x = t2

Where t1 and t2 are compiler generated temporary variables.

Addresses and Instructions

These are different types of TAC:

 Assignment statements are of the form x = y op z

 Assignment instructions are of the form x = op z (is unary operation like unary

minus)

 Copy statements are of the form x = y (value of y is assigned to x).

 Unconditional jumps such as

if x relop y goto L

(relational operators <>, <, >, <=, >=, =)

 Param x and call p, n for procedure calls and return y where y represents a

returned value (optional).

Param X1

Param X2

Param Xn

 The following are the different types of TAC

1. x = y op z Assignment (op = binary arithmetic or logical

operation)

2. x = op y Unary assignment (op = unary operation)

3. x = y Copy (x is assigned the value of y)

4. goto L Unconditional jump

Unit-4 Compiler Design TEC

CHAKRAVARTHY, ASSOCIATE PROFESSOR, DEPARTMENT OF CSE 5

5. if x relop goto L Conditional jump (relop is <>, <, >, <=, >=, =)

6. Param x Procedure call

7. call p, n Procedure call

8. return z Procedure call

9. a = b [i] Index assignment

10. x [i] = y Index assignment

11. x = &y

x = *y

Pointer assignment

12. *x = y Pointer assignment

3 Q: Briefly discuss about the implementations of TAC or Structure of 3AC.

 Three address code is an abstract form of intermediate code that can be

implemented as a record with the address fields.

 There are three representations used for three address code.

 They are

1. Quadruple representation.

2. Triple representation.

3. Indrect triple representation.

Quadruple representation

 Quadruple is a structure with the atmost four fields such as,

op arg1 arg2 result

 The field op is sued to represent the internal code for operator.

 arg1 and arg2 represents two operands used and result field is used to store the

result of an expression.

 For example, consider the input string x = - a * b + - a * b

 The following is the three address code.

t1 = uminus a

t2 = t1 * b

t3 = uminus a

t4 = t3 * b

t5 = t2 + t4

x = t5

Unit-4 Compiler Design TEC

CHAKRAVARTHY, ASSOCIATE PROFESSOR, DEPARTMENT OF CSE 6

 The following is the quadruple representation.

op arg1 arg2 result

uminus a t1

* t1 b t2

uminus a t3

* t3 b t4

+ t2 t4 t5

= t5 x

Triple representation

 In this, the use of temporary variables is avoided by referring the pointers in the

symbol table.

 Triple is a structure with the atmost three fields such as,

op arg1 arg2

 For example, consider the input string x = - a * b + - a * b

 The following is the three address code.

t1 = uminus a

t2 = t1 * b

t3 = uminus a

t4 = t3 * b

t5 = t2 + t4

x = t5

 The following is the triple representation.

op arg1 arg2

uminus a

* (0) b

uminus a

* (2) b

+ (1) (3)

= x (4)

Unit-4 Compiler Design TEC

CHAKRAVARTHY, ASSOCIATE PROFESSOR, DEPARTMENT OF CSE 7

Indirect triple representation

 In this, it uses additional array to list the pointers of triple in the desired order.

 For example, consider the input string x = - a * b + - a * b

 The following is the three address code.

t1 = uminus a

t2 = t1 * b

t3 = uminus a

t4 = t3 * b

t5 = t2 + t4

x = t5

 The following is the Indirect triple representation.

(0) (11)

(1) (12)

(2) (13)

(3) (14)

(4) (15)

(5) (16)

4 Q: Briefly explain about Types and Declarations

 A complier has to perform semantic checking along with syntactic checking.

 Semantic checks can be static (during compilation) or dynamic (during run time).

 The application of types is grouped under checking and translation.

Type checking

 The process of verifying and enforcing the constraints of types – type checking –

may occur either at compile time (static check) or run time (dynamic check).

 A “type checker” implements the type system.

 A “type system” is a collection of rules for assigning type expressions to the parts of

a program.

Translation applications

 Compiler can determine the storage required from the type of a name at run time.

op arg1 arg2

uminus a

* (11) b

uminus a

* (13) b

+ (12) (14)

= x (15)

Unit-4 Compiler Design TEC

CHAKRAVARTHY, ASSOCIATE PROFESSOR, DEPARTMENT OF CSE 8

Type expressions

 Type expression denotes the type of a language construct. It can be a basic type Eg:

primitive data type like int, real, char, boolean etc., or a type error or a void: no

type.

Type equivalence

 Type equivalence contains two important concepts.

 Name equivalence have the same name. For example, a, b have same type and c has

different type.

 Structural equivalence have the same structure. For example, a, b and c have the

same type.

Declaration

 Whenever a declaration is encountered, then create a symbol entry for every local

name in a procedure.

 The symbol table entry should contain type of name, how much storage the name

requires and a relative offset.

Storage layout for local names

 If we know the type of a name, we can determine the amount of storage required for

the name at run time.

 Type and relative address are saved in the symbol table entry for the name.

 The ‘width’ of type is defined as the number of storage units required for objects of

that type.

 SDT is used to compute types and their width for basic and array types.

5 Q: Explain about Type checking.

Rules for Type Checking (TC)

 Type Checking can be Type Synthesis (TS) and Type Inference (TI).

 Type Synthesis (TS) uses the types of its subexpressions in order to build the type of

expression. TS require names to declare before they are used.

 Type Inference (TI) is used to determine the type of a language construct from the

way it is used.

Type conversions

 Type conversion rules differ from one language to another. Java uses widening and

narrowing conversions between primitive types.

Unit-4 Compiler Design TEC

CHAKRAVARTHY, ASSOCIATE PROFESSOR, DEPARTMENT OF CSE 9

Unification

 Testing equality of expressions is the concept of unification.

6 Q: Explain about Control Flow in Intermediate code generation.

 The main idea of converting any flow of control statements to 3AC is to stimulate

the “branching” of the control flow.

 Boolean expression in programming languages are often used to:

1. Alter the flow of control.

2. Compute logical value.

 Flow of control statements may be converted to 3AC by using following functions:

1. new label – returns a new symbolic label each time it is called.

2. gen () – generates the code (string) passed as parameter to it.

 The following attributes are associated with non-terminals for the code generation:

1. code– contains the generated 3AC.

2. true – contains the label to which a jump takes place if the Boolean expression

associated evaluates to true.

3. false – contains the label to which a jump takes place if the Boolean expression

associated evaluates to false.

4. begin – contains the label / address pointing to the beginning of the code block

for the statement ‘generated’ by the non-terminal.

Boolean expressions

 Boolean expressions consist of Boolean operations like AND (&&), OR (||) and

NOT (!) as in C applied to the elements that are Boolean variables or relational

expressions of the form E1 rel E2

E1 rel E2

 Arithmetic <. <=, >>=, ! Arithmetic

 expression expression

 For example, E E && E | E || E | !E | (E) | E1 rel E2 | true | false

Short circuit code

 Given Boolean expression can be translated into 3AC without generating code for

any of the boolean operators and without having the code necessarily evaluate the

entire expression. This is called as Jumping code or short circuit code.

Unit-4 Compiler Design TEC

CHAKRAVARTHY, ASSOCIATE PROFESSOR, DEPARTMENT OF CSE 10

 For example, if (a < 10 || a > 15 && a != b)

x = 1;

Translate this to jumping code or short circuit code

 if a < 10 goto L1

 if false a > 15 goto L2

 if false a != b goto L2

 L1 : x = 1

 L2 :

Flow of control statements

 The main idea of converting any flow of control statement to the 3AC is to stimulate

the “branching” of the flow of control using the goto statement.

 Consider the following grammar,

S if E then S1 | if E then S1 else S2 | while E do S1 ;

 The simulation of the flow of control branching for each statement is depicted

pictorially as follows:

if – then

if – then else

Unit-4 Compiler Design TEC

CHAKRAVARTHY, ASSOCIATE PROFESSOR, DEPARTMENT OF CSE 11

while – do

7 Q: Explain about Backpatching.

 The main problem in generating 3AC in a single pass is that we may know the labels

that control must go to at the time jump statements are generated.

 In order to get rid of this problem, a series of branching statements with the targets

of the jumps temporarily left unspecified is generated.

 Back patching is putting the address instead of labels when the proper label is

determined.

One pass code generation using back patching:

 Back patching algorithms perform three types of operations:

1. Makelist (i) – Creates a new list containing only ‘ i ‘, an index into the array of

quadruples and returns pointer to the list it has made.

2. Merge (i, j) – Concatenates the lists pointed by ‘i’ and ‘j’ and returns a pointer

to the concatenated list.

3. Back patch(P, i) – Inserts ‘i’ as the target label for each of the statements on the

list pointed by P.

Unit-5 Compiler Design TEC

CHAKRAVARTHY, ASSOCIATE PROFESSOR, DEPARTMENT OF CSE 1

Runtime environments – Stack allocation of space, Access to non-local data on the stack,

Heap management.

Code generation – Issues in the design of code generation, The target language, Addresses

in the target code, Basic blocks and flow graphs, A simple code generator.

1 Q: Stack allocation of space

 Stack area is used to allocate space to the local variables whenever the procedure is

called. This space is popped off the stack when the procedure terminates.

Activation Trees

 Activation trees are used to describe the nesting of procedure calls to make the stack

allocation feasible efficiently.

 The nesting of procedure calls can be illustrated using the following quicksort

example.

1. program sort(input,output)

2. var a : array[0 .. 10] of integers

3. procedure readarray

4. var i : integer

5. begin

6. for i = 1 to 9 do read array(a [i])

7. end

8. function partition(y , z : integer) : integer

9. var i , j , x , v : integer

10. begin ….

11. end

12. procedure quicksort(m ,n : integer)

13. var i : integer

14. begin

15. if (n > m) then begin

16. i = partition (m , n)

17. quicksort(m, i – 1)

18. quicksort(i + 1 , n)

19. end

20. end

Unit-5 Compiler Design TEC

CHAKRAVARTHY, ASSOCIATE PROFESSOR, DEPARTMENT OF CSE 2

21. begin

22. a [0] := -9999, a [10] := 9999

23. readarray

24. quicksort(1, 9)

25. end

 The following is the activation tree corresponding to the output of quicksort.

Unit-5 Compiler Design TEC

CHAKRAVARTHY, ASSOCIATE PROFESSOR, DEPARTMENT OF CSE 3

Activation Record (AR)

 Activation Record is a memory block used for information management for single

execution of a procedure.

 The following is the activation record (Read from bottom to top)

Actual parameters

Returned values

Control link

Access link

Saved machine status

Local data

Temporaries

Temporaries – It hold temporary values, such as the result of mathematical

calculation, a buffer value or so on.

Local data – It belongs to the procedure where the control is currently located.

Saved machine status- It provides information about the state of a machine just before

the point where the procedure is called.

Access link – It is used to locate remotely available data. This field is optional.

Control link – It points to the activation record of the procedure which called it, ie the

caller. This field is optional. This link is also known as dynamic link.

Return value – It holds any valued returned by the called procedure. These values can

also be placed in a register depending on the requirements.

Actual parameters – These are used by the calling procedures.

2 Q: Access to non-local data on the stack

 Non-local data is a parameter that is used within a procedure. There are various

situations of access to non-local data. These include:

Data access without nested procedures

For non-nested procedures, variables are accessed as follows:

 Global variables are declared statically as their values and locations are known or

fixed at compile time.

 Local variables are declared locally at the top of the stack using stack top pointer.

Unit-5 Compiler Design TEC

CHAKRAVARTHY, ASSOCIATE PROFESSOR, DEPARTMENT OF CSE 4

A language with nested procedure declarations – ML

Properties of ML include:

 The variables declared in ML are unchangeable once they are initialized. This means

that ML is a functional language.

 Variable declaration is done using the statement:

val <name> = <exp>

 The syntax for defining functions is,

fun <name> (<arg>) = <body>

 Function bodies are defined as,

let <definitions> in <statements> end

Nesting depth

 Nesting Depth defines the level from the start of a procedure at which a particular

nested procedure is defined.

Access link

 It is used to locate any variable or procedure in the case of nested procedures.

Displays

 Displays are used for efficient and easy access of non-local data by avoiding the use of

long chains of activation links, in situations having large network depths.

 Display uses auxiliary array called d.

3 Q: Heap Management

 Heap is the unused memory space available for allocation dynamically.

 It is used for data that lives indefinitely, and is freed only explicitly.

 The existence of such data is independent of the procedure that created it.

The memory manager

 Memory manager is used to keep account of the free space available in the heap area.

Its functions include,

 allocation

 deallocation

 The properties of an efficient memory manager include:

 space efficiency

 program efficiency

 low overhead

Unit-5 Compiler Design TEC

CHAKRAVARTHY, ASSOCIATE PROFESSOR, DEPARTMENT OF CSE 5

The memory hierarchy of a computer

 Typical sizes Typical access times

2GB Virtual memory (disk) 3 – 15 ms

256MB – 2 GB Physical memory (RAM) 100 – 150 ms

128Kb – 4 MB 2nd Level Cache 40 – 60 ns

16 – 65KB 1st Level Cache 5 – 10 ns

32 words Registers 1 ns

Locality in programs

Locality refers to the amount of data requirements for a particular program, and the

times required to access or locate the data. Locality is of two types namely,

 Temporal locality – This is present if the memory locations accessed by it are likely to

be accessed again soon.

 Spatial locality – This is the condition when the memory locations close to the location

accessed are likely to be accessed within a short period of time.

4 Q: Issues in the design of code generation

Instruction selection

 The job of instruction selector is to do a good job overall choosing which instructions

to implement which operator in the low level intermediate representation.

 Issues here are:

 level of the IR

 nature of the instruction set architecture

 desired quality of the generated code

 Target Machine:

 n general purpose registers

 instructions: load, store, compute, jump, conditional jump

 various addressing mode

 indexed address, integer indexed by a register, indirect addressing and

immediate constant.

 For example, X = Y + Z we can generate,

LD R0, Y

ADD R0, R0, Z

ST X, R0

Unit-5 Compiler Design TEC

CHAKRAVARTHY, ASSOCIATE PROFESSOR, DEPARTMENT OF CSE 6

Register allocation

 Instructions involving register operands are usually shorter and faster than those

involving operands in memory. Therefore, efficient utilization of registers is

particularly important in generating good code.

 The most frequently used variables should be kept in process register for faster access.

 The use of registers if often subdivided into two sub problems:

 During “register allocation”, we select the set of variables that will reside in

register at a point in the program.

 During “register assignment”, we pick the specific register that a variables will

reside in.

 For example, consider t1 = a * b

t2 = t1 + c

t3 = t2 / d

optimal machine code sequence is,

 L R1, a

 M R1, b

 A R2, c

 D R2, d

 ST R1, t3

5 Q: The Target Language

 The output of Code Generation (CG) is the target language.

 The output may take different forms like absolute machine language, relocatable

machine language or assembly language.

Simple target machine model

The possible kinds of operations are listed below:

1. Load operation (LD)

 General format is LD dst, addr.

 LD loads the value in location ‘addr’ into location ‘dst’. Here dst is destination.

 For example, LD R1, x loads the value in location x into register R1.

2. Store operation (ST)

 General format is ST dst, src.

 For example, ST x, R1 stores the value in register R1 into the location x.

Unit-5 Compiler Design TEC

CHAKRAVARTHY, ASSOCIATE PROFESSOR, DEPARTMENT OF CSE 7

3. Computation operation

 The general form is OP dst, src1, src2 where OP is a operator like ADD, SUB.

 For example, ADD R1, R2, R3 adds R2 and R3 values and stores into R1.

4. Unconditional jump (BR)

 The general form is BR L where BR is branch. This causes control to branch to the

machine instruction with label L.

5. Conditional jump

 The general form is Bcond R, L where R is a register, L is label and cond stands for

any of the common tests on values in register R.

 For example, BGTZ R2, L This instruction causes a jump to label L if the value in

register R2 is greater than zero and allows control to pass to the next machine

instruction if not.

6 Q: Addresses in the target code

 In this, it explains storage allocation strategies namely static and stack allocation

strategies.

Static allocation strategy

 In static allocation names are bound to the storage as the program is compiled. Since

bindings don’t change at runtime, its names are bound to the same storage whenever

the procedure is activated.

 The compiler must decide where the activation record is to go, relative to the target

code. Once this decision is made, the position of each activation record and the storage

for each name in the record is fixed.

 Compiler gives the address of code which is required by the target code.

Limitations:

 The size of data objects must be known at compile time.

 Recursive procedures are not allowed because all the activations of a procedure use

the same bindings for local names.

 Data structures cannot be created dynamically since there is no mechanism for

storage allocation at runtime.

Stack allocation strategy

 In stack allocation, storage is organized as stack and activation records are pushed

and popped as the activation begins and ends respectively.

 Storage for locals in each call of a procedure is contained in the activation record.

Unit-5 Compiler Design TEC

CHAKRAVARTHY, ASSOCIATE PROFESSOR, DEPARTMENT OF CSE 8

 The values of locals are deleted when activation ends.

 Consider the stack in which size of all activation records are known at compile time.

Consider a register “top” which points the top and increments at run time. Activation

record is allocated and deallocated by incrementing and decrementing the top with

size of the record.

7. Basic blocks and Flow graph

Basic blocks

 Basic block is sequence of constructive statements in which flow of control enters at

the beginning and leaves at the end without halt or possibility of branching except at

the end.

 Basic blocks are constructed by partitioning a sequence of three address instruction.

Algorithm for partitioning into basic blocks:

INPUT:- sequence of three address instructions

OUTPUT:- list of basic blocks

METHOD:

Step1

The first step is to determine the set of leaders. The rules to obtain the leaders are

1. The first statement is a leader.

2. Any statement which is the target of conditional or unconditional GOTO is a

leader.

3. Any statement which immediately follows the conditional GOTO or unconditional

GOTO is a leader.

Step2

For each leader, construct the basic blocks which consists of the leader and all the

instructions up to but not including the next leader or the end of the intermediate

program.

 For example, let us construct the basic blocks for the following:

1. i = 0

2. if (i > 10) goto 6

3. a[i] = 0

4. i = i + 1

5. goto 2

6. end

Unit-5 Compiler Design TEC

CHAKRAVARTHY, ASSOCIATE PROFESSOR, DEPARTMENT OF CSE 9

 Let us apply step1 and step2 of algorithm of algorithm to identify basic blocks.

Step1

1. i = 0

2. if (i > 10) goto 6

3. a[i] = 0

4. i = i + 1

5. goto 2

6. end

 Based on rule 1 of step1, 1 statement is leader.

 Based on rule 2 of step1, 2 and 5 are leaders.

 Based on rule 3 of ste1, 3 is a leader.

Step2

 For each leader, construct the basic blocks.

L

L

L

L

Flow graph

 Flow graphs are used to represent the basic blocks and their relationship by a directed

graph.

 There exists an edge from block 1 to block2 iff it is possible for the first instruction in

block2 to immediately flow to the last instruction in block1.

 For example, Let us write the flow graph for the following basic blocks.

1. i = 0 B1

2. if (i > 10) GOTO 6 B2

3. a[i] = 0

4. i = i + 1

5. GOTO 2 B3

6. end B4

1. i = 0 B1

Unit-5 Compiler Design TEC

CHAKRAVARTHY, ASSOCIATE PROFESSOR, DEPARTMENT OF CSE 10

 Flow graph for these basic blocks is:

B1

B2

B3

B4

8 Q Code Generation algorithm

Machine instruction for operations

For X = Y + Z do the following:

 Use getReg (X = Y + Z) to select registers for X, Y and Z. Let the registers be Rx,

Ry and Rz.

 If Y is not in Ry then issue an instruction LD Ry, Y. Here Y is one of the memory

location for Y.

2. if (i > 10) GOTO 6 B2

4. a[i] = 0

5. i = i + 1

6. GOTO 2 B3

3. end B4

1. i = 0

2. if (i > 10) GOTO B4

4. a[i] = 0

5. i = i + 1

6. GOTO B2

3. end

Unit-5 Compiler Design TEC

CHAKRAVARTHY, ASSOCIATE PROFESSOR, DEPARTMENT OF CSE 11

 Similarly if Z is not in Rz, issue an instruction LD Rz, Z. Here Z is a memory

location of Z.

 Issue the instruction ADD Rx, Ry, Rz

Machine instructions for copy statements

 A three address copy statement can be of the form x = y. This is a special case where

we assume that ‘getReg’ will always choose the same register for both x and y.

Ending the basic block

 When the block ends, we need not have to remember the variable value if it is

temporary. In this case, assume that its register is empty if the variable is temporary

and used only within the block.

 Then generate the instruction ST x, R where R is a register in which x’s value exists

at end of the block.

Managing the Register and Address descriptors

1. Load operation (LD)

 General format is LD dst, addr.

 LD loads the value in location ‘addr’ into location ‘dst’. Here dst is destination.

 For example, LD R1, x loads the value in location x into register R1.

2. Store operation (ST)

 General format is ST dst, src.

 For example, ST x, R1 stores the value in register R1 into the location x.

3. Computation operation

 The general form is OP dst, src1, src2 where OP is a operator like ADD, SUB.

For example, ADD R1, R2, R3 adds R2 and R3 values and stores into R1.

Unit-6 Compiler Design TEC

CHAKRAVARTHY, ASSOCIATE PROFESSOR, DEPARTMENT OF CSE 1

Machine Independent code optimization – Principle sources of optimization, Peephole

optimization, Introduction to data flow analysis.

Principle sources of optimization

1 Q: Explain Principle sources of optimization techniques (OR) Function preserving

transformations).

The following are the principle sources of optimization techniques or function preserving

transformations:

a) Elimination of common sub expression

b) Copy propagation

c) Dead code elimination

d) Constant folding

e) Loop optimizations

Elimination of common sub expression

 Common sub expressions can be either eliminated locally or globally.

 Local common sub expressions can be identified in a basic block.

 Hence first step to eliminate local common sub expressions is to construct a basic

block.

 Then the common sub expressions in a basic block can be deleted by constructing a

directed acyclic graph (DAG).

 For example, x = a + b * (a + b) + c + d

The following is the basic block.

 The local common sub expression in the above basic block are

t1 = a + b

t2 = a + b

 Hence these local common sub expressions can be eliminated. The block obtained

after eliminating local common sub expression is shown below.

t1 = a + b

t2 = a + b

t3 = t1 * t2

t4 = t3 + c

t5 = t4 + d

x = t5

Unit-6 Compiler Design TEC

CHAKRAVARTHY, ASSOCIATE PROFESSOR, DEPARTMENT OF CSE 2

Copy or Variable propagation

 Consider the assignment statement of the form x = y. The statement x = y is called as

copy statement.

 To explain copy propagation, take the following example.

a) B1 B2

 B3

b) B1 B2

 B3

 Here the common sub expression is j = a + d. When a + d is eliminated, it uses j = b.

Dead code elimination

 A piece of code which is not reachable and never used anywhere in the program, then

it is said to be dead code, and can be removed from the program safely.

 Generally copy statements may lead to dead code. For example,

x = b + c

z = x

…

d = x + y

 Suppose z variable is not used in the entire program, the z =x becomes the dead code.

Hence, it can be optimized as,

t1 = a + b

t2 = t1 * t1

t3 = t2 + c

t4 = t3 + d

x = t4

b = a + d

 c = b

b = a + d

 h = b

j = a + d

b = a + d

 c = b

b = a + d

 h = b

j = b

Unit-6 Compiler Design TEC

CHAKRAVARTHY, ASSOCIATE PROFESSOR, DEPARTMENT OF CSE 3

x = b + c

…

d = x + y

Constant folding

 In folding technique, the computation of a constant is done at compile time instead of

execution time and further the computed value of the constant is used.

 For example, k = (22 / 7) * r * r

Here folding is done by performing the computation of (22 / 7) at compile time. So it

can be optimized as,

 k = 3.14 * r * r

Loop optimizations

 The major source of code optimization is loops, especially the inner loops.

 Most of the run time is spent inside the loops which can be reduced the number of

instructions in the inner loop.

 The following are the loop optimization techniques.

1. Code motion.

2. Elimination of induction variables.

3. Strength reduction.

1. Code motion:-

 Code motion is a technique which is used to move the code outside the loop.

 If there exists any expression outside the loop which the result is unchanged even after

executing the loop many times, then such expression should be placed just before the

loop.

 For example, while (x ! = max =3)

{

 x = x + 2;

}

Here the expression max -3 is a loop invariant computation. So this can be optimized

as follows:

 k = max -3;

while (x ! = k)

{

 x = x + 2;

}

Unit-6 Compiler Design TEC

CHAKRAVARTHY, ASSOCIATE PROFESSOR, DEPARTMENT OF CSE 4

2. Elimination of induction variables:-

 An induction variable is a loop control variable or any other variable that depends on

the induction variable in some fixed way.

 It can also be defined as a variable which is incremented or decremented by a fixed

number in the loop each time is executed.

 For example, for(i = 0, j = 0, k =0; i < n; i++)

{

 printf(“%d”, i);

}

 There are three induction variables i, j, k used in the for loop. So each time i is used

but j and k are not used. Hence the code can be optimized after elimination of unused

induction variables is given below.

for(i = 0; i < n; i++)

{

 printf(“%d”, i);

}

3. Strength reduction:-

 It is the process of replacing expensive operations by the equivalent cheaper

operations on the target machine.

 For example, for(k = 1; k < 5; k++)

{

 x = 4 * k;

}

 On many machines, multiplication operation takes more time than addition or

subtraction. Hence, the speed of the object code can be increased by replacing

multiplication with addition or subtraction.

for(k = 1; k < 5; k++)

{

 x = x + 4;

}

Unit-6 Compiler Design TEC

CHAKRAVARTHY, ASSOCIATE PROFESSOR, DEPARTMENT OF CSE 5

2 Q: Explain briefly about peephole optimization techniques.

 Peephole optimization is simple but effective method used to locally improve the

target code by examining a short sequence of target instructions known as peephole

and then replace these instructions by a shorter and/or faster sequence of instructions

whenever required.

 The following are peephole optimization techniques:

1. Elimination of redundant instructions.

2. Optimization of flow of control or elimination of unreachable code.

3. Algebraic simplifications.

4. Strength reduction.

1. Elimination of redundant instructions:-

 This includes elimination of redundant load and store instructions.

 For example, MOV R1, A

MOV A, R1

 Here first instruction is storing the value of A into register R1 and second instruction

is loading R1 value into A.

 These two instructions are redundant so eliminate instruction (2) because whenever

instruction (2) is executed after (1), it is ensured that the register R1 contains A value.

2. Optimization of flow of control or elimination of unreachable code:-

 An unlabeled instruction that immediately follows an unconditional jump can be

removed.

 For example,

i = j

if k = 2 goto L1

goto L2

L1: k is good

L2:

Here L1 immediately follows unconditional jump statement goto L2. Then the code

after elimination of unreachable code is

i = j

if k ≠ 2 goto L2

k is good

L2:

Unit-6 Compiler Design TEC

CHAKRAVARTHY, ASSOCIATE PROFESSOR, DEPARTMENT OF CSE 6

3. Algebraic simplifications:-

 Algebraic identities that occur frequently and which is worth considering them can

be simplified.

 For example, X = X * 1 or X = 0 + X is often produced by straight forwards

intermediate code generation algorithms. Hence they can be eliminated easily through

peephole optimization.

4. Strength reduction:-

 Replace expensive statements by a cheaper one.

 For example, X2 is expensive operation. Hence replace this by X * X which is cheaper

one.

3 Q: Explain about Data flow analysis

 Data flow analysis:

– Flow-sensitive: sensitive to the control flow in a function

– Intra procedural analysis

 Examples of optimizations:

– Constant propagation

– Common sub expression elimination

– Dead code elimination

 Data flow analysis abstraction:

– For each point in the program, combines information of all the instances of the

same program point.

 Reaching Definitions

 Every assignment is a definition

 A definition d reaches a point p if there exists path from the point immediately

following d to p such that d is not killed (overwritten) along that path.

Unit-6 Compiler Design TEC

CHAKRAVARTHY, ASSOCIATE PROFESSOR, DEPARTMENT OF CSE 7

 Data Flow Analysis Schema

 Build a flow graph (nodes = basic blocks, edges = control flow)

 Set up a set of equations between in[b] and out[b] for all basic blocks b

Live Variable Analysis

 Definition

– A variable v is live at point p if the value of v is used along some path in the flow graph

starting at p.

– Otherwise, the variable is dead.

 For each basic block, determine if each variable is live in each basic block

