
1

UNIT – I

Algorithm Definition:
 An Algorithm is any well-defined computational procedure that takes some value or set of

values as Input and produces a set of values or some value as output. Thus algorithm is a sequence of

computational steps that transforms the input into the output.

 An Algorithm is a finite set of instructions that, if followed, accomplishes a particular task. In

addition, all algorithms should satisfy the following criteria.

Characteristics of an Algorithm:

1. INPUT Zero or more quantities are externally supplied.

2. OUTPUT At least one quantity is produced.

3. DEFINITENESS Each instruction is clear and unambiguous.

4. FINITENESS If we trace out the instructions of an algorithm, then for all cases, the algorithm

terminates after a finite number of steps.

5. EFFECTIVENESS Every instruction must very basic so that it can be carried out, in principle, by

a person using only pencil & paper.

Differences between algorithm and program:

Algorithm Program

1. It is a step by step procedure for

solving the given problem.

1. A program is nothing but a set of

instructions or executable code.

2. An algorithm is designed by

designer

2. The program can be implemented

by a programmer.

3.An algorithm is done at design

phase

3. A program is implemented at

implementation phase.

4. An algorithm can be expressed by

using English, flowchart and pseudo

code.

4. A program can be written by using

languages like C, C++, Java etc…

5. After writing the algorithm, we

have to analyze it using space and

time complexities.

5.After writing a program, we have to

test them

Algorithm Specification: Algorithm can be described in three ways.

1. Natural language like English: When this way is choose care should be taken, we

should ensure that each & every statement is definite.

2. Graphic representation called flowchart: This method will work well when the algorithm is small&

simple.

3. Pseudo-code Method: In this method, we should typically describe algorithms as program, which

resembles language like PASCAL & ALGOL

Pseudo-Code Conventions: The following are set of rules need to be followed while writing algorithms

1. Comments begin with // and continue until the end of line.

2. Blocks are indicated with matching braces { and }. A compound statement can be represented as a

block. The body of a procedure also forms a block. Statements are delimited by ;.
3. An identifier begins with a letter. The data types of variables are not explicitly declared. Whether a

variable is local or global to a procedure will also be evident from the context.

4. Compound data types can be formed with records. Here is an example,

2

Node= Record

{

 data type – 1 data-1;

 .

 .

 .

 data type – n data – n;

 node * link;

 }

 Here link is a pointer to the record type node. Individual data items of a record can be

accessed with and period.

5. Assignment of values to variables is done using the assignment statement.

<Variable>:= <expression>;

6. There are two Boolean values TRUE and FALSE.

 Logical Operators AND, OR, NOT

Relational Operators <, <=,>,>=, =, !=

7. The following looping statements are employed.

For, while and repeat-until

While Loop:

 While < condition > do

 {

 <statement-1>

 .

 .

 .

 <statement-n>

 }

As long as condition is TRUE, the statements get executed. When condition becomes FALSE, the

loop is exited. The value of condition is evaluated at top of the loop. The general form of For loop is

For Loop:

for variable: = value 1 to value 2 step step do

{

 <statement-1>

 .

 .

 .

<statement-n>

}

Here value 1, value 2 and step are arithmetic expressions. A variable of type integer or real or a

numerical constant is a simple form of an arithmetic expression. The clause “step step” is optional and

taken as +1 if it does not occur. Step could either be positive or negative. Variable is tested for

termination at the start of each iteration. The repeat-until loop is constructed as follows.

repeat-until:

 repeat

 <statement-1>

 .

 .

3

 .

 <statement-n>

 until<condition>

The statements are executed as long as condition is false. The value of condition is computed after

executing the statements. The instruction break; can be used within any of the above looping

instructions to force exit. In case of nested loops, break; results in the exit of the innermost loop that it

is a part of. A return statement within any of the above also will result in exiting the loops. A return

statement results in the exit of the function itself.

8. A conditional statement has the following forms.

 If <condition> then <statement>

 If <condition> then <statement-1>

 else <statement-1>

Here condition is the Boolean expression and statements are arbitrary statements.

Case statement:

Case

{

 : <condition-1> : <statement-1>

 .

 .

 .

 : <condition-n> : <statement-n>

 : else : <statement-n+1>

}

Here statement 1, statement 2 etc. could be either simple statement or compound statements. A

case statement is interpreted as follows. If condition 1 is true, statement 1 gets executed and case

statement is exited. If statement 1 is false, condition 2 is evaluated. If condition 2 is true, statement 2 gets

executed and the case statement exited and so on. If none of the conditions are true, statements + 1 is

executed and the case statement is exited. The else clause is optional.

9. Elements of multidimensional arrays are accessed using [and]. For example, if A is a two

dimensional array, the <i,j>th element of an array is denoted as A[i,j].

10. Input and output are done using the instructions read & write.

11. There is only one type of procedure:

Algorithm, the heading takes the form,

 Algorithm Name (Parameter lists)

Where Name is the name of the procedure and parameter list is a listing of the procedure

parameters. The body has one or more statements enclosed with braces { and }. An algorithm may or

may not return values. Simple variables to procedures are passed by value. Arrays and records are

passed by reference. An array name or record name is treated as a pointer to the respective data type.

 As an example, the following algorithm fields & returns the maximum of ‘n’ given numbers:

Algorithm Max(A,n)

// A is an array of size n

{

Result := A[1];

for I:= 1 to n do

 if A[I] > Result then

 Result :=A[I];

 return Result;

4

}

In this algorithm (named Max), A & n are procedure parameters. Result & I are Local variables.

Recursive Algorithms:

 A Recursive function is a function that is defined in terms of itself.

 Similarly, an algorithm is said to be recursive if the same algorithm is invoked in the body.

 An algorithm that calls itself is Direct Recursive.

 Algorithm ‘A’ is said to be Indirect Recursive if it calls another algorithm which in turns calls

‘A’.

 The Recursive mechanism, are externally powerful, but even more importantly, many times

they can express an otherwise complex process very clearly. Or these reasons we introduce

recursion here.

 The following 2 examples show how to develop recursive algorithms.

 In the first, we consider the Towers of Hanoi problem, and in the second, we

generate all possible permutations of a list of characters.

1. Towers of Hanoi:

 .

 .

 .

 Tower A Tower B Tower C

 According to legend, at the time the world was created, there was a diamond tower (labeled A) with

64 golden disks.

 The disks were of decreasing size and were stacked on the tower in decreasing order of size bottom to

top.

 Besides these tower there were two other diamond towers(labeled B & C)

 Goal is to move the disks from tower A to tower B using tower C, for intermediate storage.

 As the disks are very heavy, they can be moved only one at a time.

 In addition, at no time can a disk be on top of a smaller disk.

 According to legend, the world will come to an end when the priest have completed this task.

 A very elegant solution results from the use of recursion.

 Assume that the number of disks is ‘n’.

 To get the largest disk to the bottom of tower B, we move the remaining ‘n-1’ disks to tower C and

then move the largest to tower B.

 Now we are left with the tasks of moving the disks from tower C to B.

 To do this, we have tower A and B available.

5

 The fact, that towers B has a disk on it can be ignored as the disks larger than the disks being moved

from tower C and so any disk scan be placed on top of it.

Algorithm:

Algorithm TowersofHanoi(n,x,y,z)

 //Move the top ‘n’ disks from tower x to tower y.

 {

 if(n>=1) then

 {

 TowersofHanoi(n-1,x,z,y);

 Write(“move top disk from tower “ X ,”to top of tower “ ,Y);

Towersofhanoi(n-1,z,y,x);

}

 }

2. Recursive algorithm for Factorial Of Given Number:

 Algorithm rfactorial(n)

 {

 If(n=1) then

 return 1;

 else

 return (n-1) * rfactorial(n);

 }

 3. Recursive algorithm for GCD of two numbers:

 Algorithm rgcd(a,b)

 {

 if(a!=b) then

 {

 if(a>b) then

 {

 a := a – b;

 rgcd(a,b);

 }

 else

 {

 b := b- a;

 rgcd(a,b);

 }

 }

 return a;

 }

Performance Analysis: The efficiency of an algorithm is declared by measuring the performance of an

algorithm. Performance of an algorithm can be computed using Space and Time complexities. Given

algorithm can be analyzed in two ways:

1. Space Complexity: The space complexity of an algorithm is the amount of space or memory it needs

to run to compilation.

2. Time Complexity: The time complexity of an algorithm is the amount of computer time it needs to

run to compilation.

6

1. Space Complexity: The Space needed by each of these algorithms is seen to be the sum of the

following component.

a. A fixed part that is independent of the characteristics (eg: number, size) of the inputs and

outputs.

 The part typically includes the instruction space (ie. Space for the code), space for simple

variable and fixed-size component variables (also called aggregate) space for constants, and

so on.

b. A variable part that consists of the space needed by component variables whose size is

dependent on the particular problem instance being solved, the space needed by referenced

variables (to the extent that is depends on instance characteristics), and the recursion stack

space.

The space requirement s(p) of any algorithm p may therefore be written as,

 S(P) = c + Sp (Instance Variable)

 Where ‘c’ is a constant variable.

` Example 1: Compute Space complexity for the following examples:

 Algorithm abc(a,b,c)

 {

 return a+b+c;

 }

 Here, the above algorithm contains three fixed part variables (which requires 3 words

of memory), and no variable part (hence 0). Hence S(P) = 3

 Example 2:
 Algorithm sum(a,n)

 {

 s=0.0;

 for I=1 to n do

 s= s+a[I];

 return s;

 }

 The problem instances for this algorithm are characterized by n, the number of elements to

be summed. The space needed d by ‘n’ is one word, since it is of type integer.

 The space needed by ‘a’a is the space needed by variables of type array of floating point

numbers.

 This is at least ‘n’ words, since ‘a’ must be large enough to hold the ‘n’ elements to be

summed.

 So, we obtain S(P) >= (n + 3)

 [n for a[],one each for n,I and s]

2. Time Complexity: The time T(p) taken by a program P is the sum of the compile time and the run

time(execution time). The compile time does not depend on the instance characteristics. Also we may

assume that a compiled program will be run several times without recompilation .This rum time is

denoted by tp(instance characteristics). Time complexity is done by using Frequency count method

i.e. the number of times a statement is executed by the compiler.

 The number of steps any problem statement is assigned depends on the kind of statement.

For example,

7

Comments 0 steps.

Assignment statements 1 steps.

Interactive statement such as for, while & repeat-until Control part of the statement.

 Time complexity is classified in 5 types based on frequency count method:

 Constant: This statement will be executed by the compiler only once. For example, c:=a+b;

 Linear: This statement will be executed by the compiler n number of times.

 for i := 1 to n step do ----------- n+1 times

 Statement; -----------------------n times

 Quadratic: This statement will be executed by the compiler n*n times that is n2 times.

 for i := 1 to n step do ----------------- n+1 times

 for j := 1 to n step do ---------------n(n+1) times

 Statement; -------------------------n2 times

 Cubic: This statement will be executed by the compiler n*n*n times that is n3 times.

 for i := 1 to n step do ----------------- n+1 times

 for j := 1 to n step do ---------------n(n+1) times

 for k := 1 to n step do------------n2(n+1) time

 Statement; -------------------------n3 times

 Logarithmic: For each and every time the work area will be sliced to half. In such cases time

complexity will be log n.

 Time complexity can be expressed in three ways: Best case, Worst case and Average case.

 If an algorithm takes minimum amount of time to complete for a set of specific inputs it is

the Best case. For example, ‘key’ element is found at beginning of an array in linear search.

 If an algorithm takes maximum amount of time to complete for a specific set of inputs it is

worst case. For example, ‘key’ element is found at end of an array or element not found.

 If an algorithm takes average amount of time to complete for set of specific inputs it is

average case. For example, ‘key’ element found at middle of an array in linear search.

 Compute Space and Time complexity to find Sum of individual digits in a number.

 Compute Space and Time complexity to check given number is Palindrome or not.

Statement Time Complexity Space Complexity

Algorithm Sumofindiviual(n)

{

 While n > 0 do

 {

 k:= n % 10;

 n:= n / 10;

 s:= s + k;

 }

 Return s;

}

-

-

m

-

m-1

m-1

m-1

-

1

1 for n

1 for k

1 for s

Total = 4m-2 (where m indicates number of digits in the given

number)

S(P) = 3

8

 Compute Space and Time complexity to check given number is Armstrong or not.

Algorithm Time

Complexity

Space

Complexity

Algorithm armstrong(n)

{

 m:=n; ------------------------------------

 sum := 0; ------------------------------------

 while(n>0) do ------------------------------------

 {

 n := n / 10;-----------------------------------

 k := n % 10;-------------------------------------

 sum := sum + (k * k* k);------------------------

 }

if(m = sum)---

 write “Given number is Armstrong”;----------

else

 write “Given number is Not Armstrong”;----

}

1

1

m

m-1

m-1

m-1

1

1

0

m - - 1

n - - 1

sum - 1

k - - 1

Total 4m + 1 S(P) = 4 + 0 = 4

 Compute Space and Time complexity to check given number is Strong or not

Algorithm Time

Complexity

Space

Complexity

Statement Time Complexity Space Complexity

Algorithm Palindrome(n)

{

 m:= n;

 while n > 0 do

 {

 k := n % 10;

 n := n / 10;

 s := (s * 10) + k;

 }

If s = m then

 Write “given number is Palindrome”

Else

 Write “Given number is not Palindrome”

}

-

-

1

m

-

m-1

m-1

m-1

-

1

1

0

1 for m

1 for n

1 for k

1 for s

Total = 4m (where m indicates number of digits in the given

number)

S(P) = 4

9

Algorithm strong(n)

{

 sum := 0;--

 f := 0;---

 for i := 1 to n-1 do---------------------------------

 if (n%i=0) then----------------------------------

 f := f + i;--

 if (f = n) then--

 write “Given number is strong number”;-----

else

 write “Given number is not strong number”;

}

1

1

n

n - 1

n - 1

1

1

0

sum – 1

f -------1

i -------1

n ------1

Total 3n + 1 S(P) = 4 + 0 = 4

 Compute Space and Time complexity to check given number is prime or not

Algorithm Time

Complexity

Space

Complexity

Algorithm Prime(n)

{

 for i := 1 to n do ---------------------------------

 if (n%i=0) then ----------------------------------

 c++; --

 if c = 2 then --

 write “Given number is Prime”; -----

else

 write “Given number is not Prime number”;

}

n + 1

n

n

1

1

0

i -------1

n ------1

c ------1

Total 3n + 3 S(P) = 3 + 0 = 3

 Compute Space and Time complexity to find Fibonacci sequence up to given number.

Algorithm Time

Complexity

Space

Complexity

Algorithm fibonacci(n)

{

 a := 0;---

 b := 1;---

 write a, b;---

 c := a + b;---

 while (c<=n) do--------------------------------------

 {

 write c;---

 a := b;---

 b := c;--

 c := a + b;---

 }

}

1

1

1

1

n

n - 1

n - 1

n - 1

n - 1

m - - 1

n - - 1

sum - 1

k - - 1

Total 5n S(P) = 4 + 0 = 4

 Compute Space and Time complexity to find GCD of two numbers.

10

Algorithm Time Complexity Space Complexity

Algorithm GCD(a, b)

{

 While a != b do

 {

 If a > b then

 a := a – b;

 else

 b := b – a;

 }

Return a;

}

a

a – 1

a – 1

0

1

1 for a

1 for b

Total 3a – 1(Let a is largest among

two)

S(P) = 2 + 0 = 2

 Compute Space and Time complexity to find factorial of a given number

 Compute Space and Time complexity to find sum of elements present in an array

 Compute Space and Time complexity to perform matrix addition

Statement Time

Complexity

Space

Complexity

Algorithm factorial(n)

{

 f=1.0;--------------------------------------

 for i=1 to n do-----------------------------

 f:=f * i;-------------------------------------

 return f;--

 }

-

-

1

n+1

n

1

-

f – 1

i – 1

n – 1

Total 2n + 2 S(P) = 3 + 0

Statement Time

Complexity

Space

Complexity

Algorithm Sum(a,n)

{

 S=0.0;--------------------------------------

 for i=1 to n do-----------------------------

 s=s+a[i];-------------------------------------

 return s;--

 }

-

-

1

n+1

n

1

-

S – 1

i – 1

a[] – n

Total 2n + 2 S(P) = 2 + n

11

Algorithm Time

Complexity

Space

Complexity

Algorithm matadd(a,b,c,n)

{

 c[i,j] := 0; -----------------------------------

 for i := 1 to n do ---------------------

 for j := 1 to n do ------------------------

 c[i,j] := c[i,j] + (a[i,j] + b[i,j]) ----------

return c[i,j]; ---------------------------------------

}

1

(n+1)

n(n+1)

n2

1

i ---- 1

j ---- 1

n ----1

a - - n2

b - - n2

c - - n2

Total 2n2 + 2n + 3 S(P) = 3 + 3n2

 Compute Space and Time complexity to perform matrix multiplication

Algorithm Time

Complexity

Space

Complexity

Algorithm matmul(a,b,c,n)

{

 for i := 1 to n do ---------------------

 for j := 1 to n do -----------------------

 c[i,j] := 0; -----------------------------------

 for k:= 1 to n do -----------------------------

 c[i,j] := c[i,j] + (a[i,k] * b[k,j]) ----------

return c[i,j]; ---------------------------------------

}

n + 1

n(n+1)

n2

n2(n+1)

n3

1

i ---- 1

j ---- 1

k --- 1

n ----1

a - - n2

b - - n2

c - - n2

Total 2n3+3n2+2n+2 S(P) = 4 + 3n2

 Compute Space and Time complexity to perform transpose of a matrix

Algorithm Time

Complexity

Space

Complexity

Algorithm mattranspose(a,c)

{

 c[i,j] := 0; -----------------------------------

 for i := 1 to n do ---------------------

 for j := 1 to n do ------------------------

 c[i,j] := a[j,i] ----------

return c[i,j]; ---------------------------------------

}

1

(n+1)

n(n+1)

n2

1

i ---- 1

j ---- 1

n ----1

a - - n2

c - - n2

Total 2n2 + 2n + 3 S(P) = 3 + 2n2

 Compute Space and Time complexity to perform Linear Search

12

Algorithm Time

Complexity

Space

Complexity

Algorithm LS(a, key)

{

 for i := 1 to n step 1 do

 {

 If a[i] = key then

 Write “successful search”

 Else

 Write “unsuccessful search”

}

 }

n + 1

n

1

0

1 for i

1 for key

n for a[n]

Total 2n + 2 S(P) = 2 + n

 Compute Space and Time complexity to perform Binary Search

Algorithm Time

Complexity

Space

Complexity

Algorithm BS(a, key)

{

Low:=1;

High:=n

While low<=high do

{

Mid:=(low+high)/2;

If a[mid] < key then

 Low:=mid+1;

Else if a[mid] > key then

 High:=mid – 1;

Else

 Return mid;

}

Return 0;

}

1

1

n

n-1

n-1

n-1

0

0

1

0

1 for low

1 for high

1 for mid

1 for n

1 foe key

n for a[n]

Total 4n S(P) = 5 + n

How to validate Algorithms: Algorithm validation consists of two phases: Debugging and Profiling.

Debugging is the process of executing programs on sample data sets to check whether faulty results occur,

and if so correct them.

 In case, verifying correction of output on sample data fails, the following strategy can be

used: Let more than one programmer develop programs for the same problem, and compare outputs produced

by those programs. If the outputs match, then there is a good chance that they are correct.

 Profiling or performance measurement is the process of executing a correct program on

data sets and measuring the time and space it takes to complete the results.

Asymptotic notations: Asymptotic notations are used to express time complexities of algorithms in

worst, best and average cases. The following are different types of asymptotic notations which are used.

1. Big – Oh Notation

2. Omega Notation

13

3. Theta Notation

4. Small Oh Notation

5. Small Omega Notation

1. Big – Oh Notation: (O) Big – Oh Notation gives upper bound of an algorithm. This notation describes

the Worst case scenario.

Definition: Let f(n), g(n) are two non-negative functions and there exists positive constants c, n0 such

that f(n) = O(g(n)) iff f(n)≤c*g(n) for all n, n ≥ n0. It is represented as follows.

Examples:
a) Compute Big-Oh notation for f(n) = 3n+2

Ans: Given f(n) = 3n+2

 f(n) ≤ c * g(n)

 3n+2 ≤ 3n + n for n ≥ 2

 3n+2 ≤ 4n where c = 4, g(n) = n and n0=2

 Hence f(n) = O(n)

b) Compute Big-Oh notation for f(n) = 10n2+4n+2

Ans: Given f(n)= 10n2+4n+2

 f(n) ≤ c * g(n)

10n2+4n+2 ≤ 10n2+4n+n for n ≥ 2

10n2+4n+2 ≤ 10n2+5n

10n2+4n+2 ≤ 10n2+n2 for n ≥ 5

10n2+4n+2 ≤ 11n2 where c = 11, g(n) = n2 and n0=5

Hence f(n) = O(n2)

c) Compute Big-Oh notation for f(n) = 1000n2+100n-6

Ans: Given f(n) = 1000n2+100n-6

 f(n) ≤ c * g(n)

 1000n2+100n-6 ≤ 1000 n2+100n for all values of n

 1000n2+100n-6 ≤ 1000 n2+n2 for n ≥ 100

 1000n2+100n-6 ≤ 1001 n2 where c =1001, g(n) = n2 and n0=100

 Hence f(n)=O(n2)

d) Compute Big-Oh notation for f(n) = 6*2
n
+n2

Ans: Given f(n) = 6*2
n
+n2

 f(n) ≤ c * g(n)

 6*2
n
+n2 ≤ 6*2

n
+ 2

n for n ≥ 4

 6*2
n
+n2 ≤ 7*2

n
 where c = 7, g(n)=2

n
 and n0=4

 Hence f(n)=O(2
n
)

2. Omega Notation (Ω): Omega Notation gives lower bound of an algorithm. This notation describes best

case scenario.

14

Definition: Let f(n), g(n) are two non-negative functions and there exists positive constants c, n0 such

that f(n) = Ω(g(n)) iff f(n) ≥c*g(n) for all n, n ≥ n0. It is represented as follows.

Examples:

a) Compute omega notation for f(n)=3n+2

Ans: Given f(n)=3n+2

 f(n) ≥ c * g(n)

 3n+2≥3n for all values of n (n≥0)

 Where c =3, g(n)=n and n0=0

 Hence f(n) = Ω(n)

b) Compute omega notation for f(n)= 10n2+4n+2

Ans: Given f(n)= 10n2+4n+2

 f(n) ≥ c * g(n)

10n2+4n+2 ≥ 10n2 for all values of n (n≥0)

Where c=10, g(n)=n2 and n0=0

 Hence f(n) = Ω(n2)

c) Compute omega notation for f(n)= 4n3+2n+3

Ans: Given f(n)= 4n3+2n+3

 f(n) ≥ c * g(n)

4n3+2n+3≥4n3 for all values of n (n≥0)

Where c=4, g(n)=n3 and n0=0

3. Theta Notation (ө): Theta Notation gives the complexity between lower bound and upper bound. This

notation describes the average case scenario.

Definition: Let f(n), g(n) are two non-negative functions and there exists positive constants c1, c2, n0 such

that f(n) = ө (g(n)) iff c1* g(n) ≤ f(n) ≤ c2*g(n) for all n, n ≥ n0

Examples:

a) Compute theta notation for f(n)=3n+2

Ans: Given f(n)=3n+2

c1* g(n) ≤ f(n) ≤ c2*g(n)

15

Compute f(n) ≤ c2*g(n)

 3n+2≤3n+n for n≥2

 3n+2≤4n where c2=2 and g(n)=n

Compute c1* g(n) ≤ f(n)

 3n ≤ 3n+2 for all values of n

 Where c1=3, g(n)=n

Hence

 f(n)= ө(n)

b) Compute theta notation for f(n)=10n2+4n+2

Ans: Given f(n)=10n2+4n+2

 c1* g(n) ≤ f(n) ≤ c2*g(n)

Compute f(n) ≤ c2*g(n)

 10n2+4n+2≤10n2+4n+n for n≥2

 10n2+4n+2≤10n2+5n

 10n2+4n+2≤10n2+n2 for n≥5

 10n2+4n+2≤11n2

 where c2=11 and g(n)=n2

Compute c1* g(n) ≤ f(n)

 10n2 ≤ 10n2+4n+2 for all values of n

 Where c1=10, g(n)=n2

Hence

 f(n)= ө(n2)

4. Small Oh Notation (o): Let f(n), g(n) are two non-negative functions, then we can say that f(n) = o(g(n)

iff

 Lt f(n)/g(n) = 0

 n ∞

Examples:

a) Compute theta notation for f(n)=3n+2

Ans: Given f(n)=3n+2

 Let g(n)=1

 Then Lt f(n)/g(n) = 3n+2/1=3n+2= ∞

 n ∞

 Let g(n)=n

 Then Lt f(n)/g(n) = 3n+2/n=3+2/n=3

 n ∞

 Let g(n)=n2

 Then Lt f(n)/g(n) = 3n+2/n2=3/n+2/n2=0

 n ∞

 Hence f(n) = o(n2)

5. Small Omega Notation (ω): Let f(n), g(n) are two non-negative functions, then we can say that f(n) =

ω(g(n) iff

 Lt f(n)/g(n) = ∞

 n ∞

Examples:

a) Compute Small Omega notation for f(n)=3n+2

Ans: Given f(n)=3n+2

 Let g(n)=1

 Then Lt f(n)/g(n) = 3n+2/1=3n+2= ∞

16

 n ∞

 Hence, f(n)= ω(1)

Amortized Analysis: Amortized analysis is a method for analyzing a given algorithms complexity.

Amortized analysis is used for algorithms where an occasional operation is very slow, but most of the other

operations are faster. In amortized analysis, sequences of operations are analyzed and guarantee a worst case

average time which is lower than the worst case time of a particular expensive operation. If one input is

changing the running time of the next set of inputs, use Amortized analysis.

 For example, finding n number of Kth smallest elements in an array of n elements. To solve this, first

we have to sort the array of n elements which need nlogn time + one second for finding minimum element.

So, total amount of time required for first operation is nlogn + 1. The remaining n-1 operations need 1 second

each with a total of n-1 seconds. Average amount of time required is given as follows.

 Average Time complexity = (nlogn+1+n-1)/n = logn + 1.

The following three different types of techniques are used to compute Amortized complexity.

 Aggregate method: Aggregate analysis is a simple method which computes the total cost T(n) for

a sequence of n operations, then divide T(n) by the number of n operations to obtain the amortized

cost or the average cost in the worst case. i.e. T(n)/n.

 Accounting method: In this method, assign different charges to different operations, with some

operations charged more or less than they actually cost. The amount we charge on operation is

called Amortized cost. The excess charge will be deposited into the data structure called Credit.

i.e Credit = Amortized cost – Actual Cost

 This credit can be used later for operations whose amortized cost is less than their actual cost.

 Potential Functional Method: In this method, after performing the operation the change is

captured as a data structure Credit. The function that captures the change is known as potential

function. If the change in potential is non-negative, then that operation is over charged, the excess

potential will be stored at the data structure. If the change in the potential is negative, then that

operation is under charged which would be compensated by excess potential available at the data

structure.

17

Frequently Asked Questions

1. Define an algorithm. What are the different criteria that satisfy the algorithm?

2. Explain pseudo code conventions for writing an algorithm.

3. Explain how algorithms performance is analyzed? Describe asymptotic notation?

4. What are the different techniques to represent an algorithm? Explain.

5. Explain recursive algorithms with examples.

6. Distinguish between Algorithm and Psuedocode.

7. Give an algorithm to solve the towers of Hanoi problem.

8. Write an algorithm to find the sum of individual digits of a given number

9. Explain the different looping statements used in pseudo code conventions.

10. What is meant by recursion? Explain with example, the direct and indirect recursive algorithms.

11. What is meant by time complexity? What is its need? Explain different time complexity notations. Give

examples one for each.

12. Describe the performance analysis in detail

13. Discuss about space complexity in detail.

14. Define Theta notation. Explain the terms involved in it. Give an example

15. Determine the running time of merge sort for

i) Sorted input ii) reverse-ordered input iii) random-ordered input

16. Explain about two methods for calculating time complexity.

17. Show that f(n) = 4n2 - 64n + 288 = Ω (n2).

18

18. Present an algorithm for finding Fibonacci sequence of a given number.

19. Write the non-recursive algorithm for finding the fibonacci sequence and derive its time complexity.

20. Compare the two functions n2 and 2n/4 for various values of n. Determine when

the second becomes larger than the first.

21. Determine the frequency counts for all statements in the following algorithms.

i) for i:=1 to n do

for i:=1 to i do

for k:=1 to j do

x:= x+1;

ii) i := 1;

while (i<=n) do

{

 x : = x + 1;

i : = i + 1;

}

21. Calculate the time complexity for matrix multiplication algorithm.

22. Calculate the time complexity for Armstrong number algorithm

23. Explain about different Asymptotic Notations with two examples

24. Find the time complexity for calculating sum of given array elements.

25. Calculate space and time complexity for matrix multiplication algorithm

26. Write an algorithm for Armstrong number and also calculate space and time complexity?

27. Write an algorithm for strong number and also calculate space and time Complexity?

28. Describe the Algorithm Analysis of Binary Search.

29. Differentiate between Big-oh and omega notation with example.

30. Write short note on amortized analysis.

	DAA PART 1.pdf (p.1-77)
	R16 DAA UNIT-1.pdf (p.1-18)
	R16 DAA UNIT-2.pdf (p.19-52)
	R16 DAA UNIT-3.pdf (p.53-77)

	DAA PART 2.pdf (p.78-149)
	DAA UNIT-4.pdf (p.1-36)
	DAA UNIT-5.pdf (p.37-52)
	DAA UNIT-6.pdf (p.53-72)

