Syllabus: UNIT-I

Abstract Data Types and the C++ Class: An Introduction to C++ Class, Data Abstraction and
Encapsulation in C++, Declaring Class Objects and Invoking Member Functions, Special Class
Operations (Constructor, Destructor and Operator Overloading), Miscellaneous Topics (Struct,
Union, Static), ADTs and C++ Classes, The Array as an Abstract Data Type, The Polynomial
Abstract Data type: Introduction, Polynomial Representation, Polynomial Addition. Spares
Matrices: Introduction, Sparse Matrix Representation, Transposing a Matrix, Matrix
Multiplication, Representation of Arrays

DATA STRUCTURE:-
A data structure is the way of organizing and storing the data into the computer, for efficient

accessing or retrieval of data.

Data Structures
|
| |

Primitive Data Structures Non-Primitive Data Structures

S T S
Integer ~ Real Character Booclean Linear Data Non-linear Data
Structures Structures

~» Arrays L,_ Trees

!
= Linked List “» Graphs

> Stacks

— Queues

Primitive Data Structures: The data structures that are not defined by any other data structures,

The basic data types are int, real, char, Boolean.

Non-Primitive Data Structures: The data structures that are defined by any other data structures.

Again it is categorized into 2 types.

1. Linear Data Structures: A data structure is said to be linear if its elements form a sequence or a
linear list.
Examples: Array, Linked List, Stacks, Queues

. Non-Linear Data: A data structure is said to be Non-linear if its elements form a not sequence or
non linear list.

Examples: Trees, Graphs

Operations on Linear and Non Linear Data Structures
o Traversal : Visit every part of the data structure
e Search : Traversal through the data structure for a given element
o Insertion : Adding new elements to the data structure

Deletion: Removing an element from the data structure.

Sorting : Rearranging the elements in some type of order(e.g Increasing or Decreasing)

Merging : Combining two similar data structures into one

Abstract Data Types and the C++ Class:-

Introduction to C++ Class:

e Class is a blueprint of data members and member functions. Class is a user defined data type
like structures and unions in C.

e By default class variables are private.

Syntax Example
class class_name class student

{ {
private: public:
/[data members and member functions declarations char name[30];
public: int roll_no, age;
/[data members and member functions declarations void getData() ;
protected: void display();
/[data members and member functions declarations }
3

1) a class name: student

2) Data members: the data that makes up the class (e.g. name. roll_no and age).

3) Member functions: the set of operations that may be applied to the objects of a class (e.g.
getData(), display()).

4) Levels of program access: these control the level of access to data members and member
functions from program code that is outside the class. There are three levels of access to class
members: public(Access outside of the class), protected(Immediate derived class can access) and

private(can’t access outside of the class).

Declaring Class Objects and Invoking Member Functions:-

The class objects are declared and created in the same way that variables are declared and

created.

The data members and member functions of class can be accessed using the dot (.) or

arrow (—>) operator with the object.

The public data members are accessed, the private data members are not allowed to be

accessed directly by the object, it can access by public member functions.

While implementing the member functions outside of the class we use special reference

called scope resolution operator (::).

Example: Implement a program on basic concepts of C++ and Data Abstraction and

Encapsulation.

#include <iostream.h>
class student
{
private:
char name([30];
int roll_no, age;
public:
void getData() ;
void display();
2
void student::getData()
{
cout<<"Enter Roll number, Age, and Name of
student: ";
cin>>roll_no>>age>>name;

}
void student::display()

cout<<"RolINumber: "<<roll_no<<endl;
cout<<"Age: "<<age<<end|;
cout<<"Name of student: "<<name;

}

int main()

{
//declaring object to the class number
student S;

S.getData();
S.display();

//declaring pointer to the object
student *ptrS;

ptrS = new student;

//creating & assigning memory

//calling member function with
pointer

ptrS->getData();

ptrS->display();

return O;

Data abstraction and Encapsulation:-

The binding the data and functions into a single unit called class is known as encapsulation.

The data is not accessible to the outside world, and only those functions which are enclosed

in the class can access it.

Abstraction is seperating the logical properties from their implementation. It shows only the

essential features of the application and hiding the details.

In C++, classes can provide methods to the outside world to access & use the data

variables, keeping the variables hidden from direct access. This can be done using access

specifiers(private).

Constructor, Destructor:- These are special member functions of the class.

Constuctor is a member function, which
initialize the data members of an
object.

It call automatically when object of the
class is created.

It will write in public access specifier,
name is same as class name and not

specify any retun type or values.

If we not define, memory is allocated to
the data members but not initialized so it

may contain undefined values.

Destuctor is a member function, which
freeing the memory associated data
members of the class

It call automatically when the lifetime of
an object ends

It will write in public access specifier,
name is same as class name, not specify
any retun type or values, not pasing any
parameters and preceeded by ~(tield).

If we not define, freeing the memory but
if data members is pointing to some

other objects, that pointing is not deleted.

Example: Implement a program on Constructors and destructors using C++

#include<iostream.h>
class StudentCon

{

private:

int rollno,age;

public:

/* Default constructor */
StudentCon()

{

cout<<"Default Constructor'<<endl;
rollno=0;age=0;

}

/* Parameterized constructor */
StudentCon(intr, int a)

{

rollno=r;

age =a;

}

/* Copy constructor */
StudentCon (const StudentCon &s2)
{

rollno = s2.rollno;

age =s2.age;

}

/* Destructor */ int main()

~StudentCon() {

{ StudentCon s1; // Default constructor

cout<<"Destructor has called"<<endl; StudentCon s2(545, 28); // Parameterized
StudentCons3=s2; //Copy constructor

} cout<<"Parameterized constructor : ";

void display() s2.display();

{ cout<<"Copy constructor : ";

cout<<rollno<<" "<<age<<endl; s3.display();

}

return 0;

Operator Overloading (Polymorphism):

e Operator overloading is a compile-time polymorphism in which the operator is overloaded
to provide the special meaning to the user-defined data type.

e Tooverload an operator must write a function in public access specifies.

Syntax: returnType operator symbol (arguments)
{ S }
This pointer:

e 'this' pointer is a constant pointer that holds the memory address of the current object. If
‘this’ pointer is written in member function of a class, it can access data members of that
class for given object.

Friend Function:

e It is non-member function of a class but can access all members of a class (Both public and
private data)

While defining friend function out of the class, no need to use scope resolution (: :) operator
and class name.

Syntax:

Declaration with in class: friend returnType function_name(parameters);

Calling through main: function_name(parameters);

Definition outside of the class: returntype function_name(parameters) { - - - }

Example: Implement a program on operator overloading, this pointer and friend function using C++

#include <iostream.h>
class Test
{
private:
int count;
int a,b;
public:
void get() {count=5;}
void put()
{ cout<<"Count: "<<count<<endl; }
void operator ++()
{ count = count+1; }

Test input(int a,int b)

{

this->a=a+b;

this->b=a-b;

return *this;

}

void output()

{ cout<<"a,b values are:";
cout<<a<<" "<<b<<endl;}

friend void dosth(Test);

MISCELLANEQOUS TOPICS:
Structure:

void dosth(Test t)

{

t.count=t.count+100;
cout<<"total count: "<<t.count;

}

int main()
{
Test t;
t.get();
t.put();
++t;

7

t.put();

Test t1,t2;
t2=t1.input(10,5);
tl.output();
t2.output();

dosth(t);
return O;

e Both the structure and classes are almost equivalent.

e Structure is collection of different data items. The default access specifier is public.

e Class is blue print of data members and member functions. The default access specifier is private.

Union:

e Union reserves the storage for one of its largest data member at run time.

e Unions are used in Linked List and Inheritance.

Static:

e Static data member is similar to global variable throughout the class, because it is not similar data

member in the class.

e Each object doesn’t have its own copy; we have only one copy, it shares by all objects of the class.

Examples:

struct student

{

int rollno, age, marks;
char name[20];

}S1; // it allocates 26 bytes of memory

union student

{

int rollno, age, marks;
char name[20];

1S2; // it allocates only 20 bytes of memory

class func
{ public:
func() {
int a=10;
static int b=5;
at++; b++;

cout<<a<<b; } };

void main()

{

func f1; //11,6
func £2; //11,7
func 13; //11,8
func f4; // 11,9

¥

ADT (Abstract Data Type):-

Abstract Data type (ADT) is a type (or class) for objects whose behavior is defined by a set of
value and a set of operations.

The definition of ADT only mentions what operations are to be performed but not how these

operations will be implemented.

The process of providing only the essentials and hiding the details is known as abstraction

The model is only focusing on the following.

The Data, which are affected by the program
The Operations, which are identified by problem

ADT Notation:

ADT type_data_structure
{

Instances/Objective/Data: Describes the structure of the data used in ADT
Operations: Describe the valid operation for this ADT

¥

Example: List ADT

ADT List

{

Instances: A list contains elements of same type arranged in sequential order
Operations:

iIsEmpty() — Return true if the list is empty, otherwise return false.

isFull() — Return true if the list is full, otherwise return false.

size() — Return the number of elements in the list.

get() — Return an element from the list at any given position.

insert() — Insert an element at any position of the list.

remove() — Remove the first occurrence of any element from a non-empty list.

replace() — Replace an element at any position by another element.

¥

ARRAY:-

e Thearray is a basic abstract data type that holds an ordered collection of items accessible

by an integer index. These items can be anything from primitive types such as integers to
more complex types.
e Since it's an ADT, it doesn't specify an implementation
ADT ARRAY
{ Instances:
Set of ordered pair (index, value), no two pairs having same index
Index €<-one dimension / two dimensional / multi dimensional array
Value < primitive data types like int, float..
Operations:
Create(); /I create an empty array
Store(index,value); //add or replace the pair into an array

Retrieve(index); /lreturn the pair with index value

Example: Implementation of an Array ADT using C++
#include <iostream.h>
class Array
{
int a[100];
int size;
public:
void create(int size);
void store(int index, int value);
int retrive(int index);
int search(int v);
void display();
|3
void Array::create(int s)
{
a= new int[s];
size=s;
}
void Array::store(int i, int v)
{
if(i< size)
alil=v;
}
int Array::retrive(int i)
{
return(ali]);

}

Storage Representation of Array:

One Dimensional Array:

int Array::search(int v)

{
for(int i=0; i < size; i++)

if(ali] == v)
return i;

return (-1);

}

void Array::display()

{
cout<<"Array Elements are: ";
for(int i=0; i< size; i++)

cout<< ali]<<" ";

}

int main()

{
Array al;
al.create(10);
al.store(0,5);
al.store(1,15);
al.store(2,25);
al.store(3,35);
al.store(4,45);
cout<<"Retrived Element:";
al.retrive(2);
cout<<"Searched Element:";
al.search(75);
al.display();
return O;

e Anarray is a collection of items stored at contiguous memory locations.

e This makes it easier to calculate the position of each element i.e., the memory location of the first

element of the array (Base Address).

Address of
1=t Element

v

Reference ! 48252

Address —s

Address of
Last Element

Element / Value —

Index S Fosition —e

Address of an element we can find easily

AJindex] = Base Address + (Size of data type * index)

Multi Dimensional Arrays:

¢ A multi-dimensional array is an array of arrays. 2-dimensional arrays are the most commonly

used. They are used to store data in a tabular manner (mXn).

e It can be represented in memory using any of the following two ways
1. Column-Major Order
2. Row-Major Order

Column-Major Order:
In this method the elements are stored column wise, i.e. m elements of first column are

stored in first m locations, m elements of second column are stored in next m locations and

S0 on
Address of A [1][j] = BaseAddress + Size of datatype * [+ (m *j)]

Row-Major Order:
In this method the elements are stored row wise, i.e. n elements of first row are stored in

first n locations, n elements of second row are stored in next n locations and so on
Address of A [1][] =BaseAddress + Size of datatype *[(i *n) +]]

Example:
Column Index

Row Index

6 4

Two-Dimensional Array

Row-Major (Row Wise Arrangement)

Row 0 Row 1

Column-Major (Column Wise Arrangement)

> &
> -

> & > @
Ll > <

Column 0 Column 1 Column 2

Row major Order:Address of A[2][3] = 1000+2 *[(2*4)+3]= 1000+22=1022
Column major Order:Address of A[1][2] = 1000+2 *[1+(3*2)]= 1000+14=1014

Column 3

Three Dimensional Arrays: array is an array of arrays of arrays (rows, columns, depth)

Columns
'\
(1
Column 1 Column 2 Column 3

111 112 113

21| 211 212

o 201 311 Array 3

231 321

Polynomial Abstract Data Type:-

Polynomial is a result of terms, where each has a form aXe, where “X” is a variable, “a” is the coefficient,

“e” is the exponent.
ADT Polynomial
{

Instances:
Set of ordered pair of coefficient and exponent

IIP(X) = agX® + a,; X®1 + ---+ a,X®n
//Where a; is nonzero float coefficient and exponent e; is non negative integer

Operations:
Polynomial(); //construct the polynomial p(x)=0

Polynomial Addpoly(Polynomial A, Polynomial B);
/lreturns result of two polynomials

Polynomial Subpoly(Polynomial A, Polynomial B);
/lreturns subtraction of two polynomials

Polynomial Multpoly(Polynomial A, Polynomial B);
/lreturns multiplication of two polynomials

flaot Evaluate(flaot f);
//Evaluate the polynomial using f and return result

}

Polynomial Representation:
Polynomial may be represented using array (or) linked lists.
Polynomial as Array Representation
It is asresulted that exponent of a expression are arranged from 0 to highest value(degree)
which is represented by subscripts(index) of respective exponents are placed at appropriate
index in the array.

Representation 1:
Polynomial is 10y°® + y> + 2y* + 5

5 + Oy +0y?+0y3+ 2y* + y® +10y*®

CoeffArray 5 0 0 0 2 1 10

Index 0 1 2 3 4 5 6

Advantage: Easy to Store and Represent
Disadvantage: Huge array size is required, waste of space
Representation 2:
A(X)=2X10004]
B(X)=X*+102C+3X+1

starta finisha startb finishb avail

L 1] |

|
1 1 1
0

Code for representations:

class Polynomial class Term
{ { _ friend Polynomial;
private:
private: int exp;
. . float coef;
int degree; .
float coef[degree+1]; class Polynomial
{ private:
Term *termArray,

Polynomial as Linked Representation:

A Polynomial node has mainly two fields. Exponent and coefficient.

Ty s

[coef { exp-ﬁiun?

Node of a Polynomial:

poly
-------» Coefficient

| 3 2
K Adx +6x +10x + 6

l

4

- Power

In each node the exponent field will store the corresponding exponent and the coefficient field will store
the corresponding coefficient. Link field points to the next item in the polynomial.

Addition of two Polynomials:
Let A and B be the two polynomials represented by the array/linked list.
1. while Both A and B are having terms (not null), repeat step 2.
2. If powers of the two terms are equal
then insert the result of the terms into the result Polynomial
Advance(move to next term) A
Advance(move to next term) B
Else if the power of the first polynomial A> power of second polynomial B
Then insert the term from first polynomial A into result polynomial
Advance(move to next term) A
Else insert the term from second polynomial B into result polynomial
Advance(move to next term) B
3. copy the remaining terms from the non empty polynomial into the
result polynomial.

Ex: Addition of two polynomials using Linked List

List 1 ——>| a —>

B

Resultant List

5 2

Ex: Addition of two polynomials using arrays

X1=7x% + 5x2+ 3x1 X2=5x3 + 3x1 -8x°

Coefficient Coefficient

Exponent Exponent

Coefficient

X3=X1+X2

Exponent

Sparse Matrix:-

e A matrix is a two-dimensional data object made of m rows and n columns, therefore having total m
x n values. If majority of the elements of the matrix have 0 value, then it is called a sparse matrix.
Why to use Sparse Matrix?
e Storage: There are lesser non-zero elements than zeros, lesser memory can be used to store only
those non zero elements.
o Computing time: Computing time can be saved for traversing only non-zero elements..
> Representing a sparse matrix by a 2D array leads to wastage of lots of memory as zeroes in the
matrix are of no use. So, instead of storing zeroes, we store only non-zero elements. This means
storing non-zero elements with triples- (Row, Column, value).
Representation: Sparse Matrix Representations can be done in following ways

1. Array representation(Triplet Representation)
2. Linked list representation
Method 1: Using Arrays

2D array is used to represent a sparse matrix in which there are three columns named as

e Row: Index of row, where non-zero element is located
e Column: Index of column, where non-zero element is located

e Value: Value of the non zero element located at index — (row,column)

In this representation, the Othrow stores the total number of rows, total number of columns and the total

number of non-zero values in the sparse matrix.

O0AOQOO

class SparseTerm class SparseMatrix

{

private:
private: SparseTerm *termArray;

{ friend SparseMatrix;

int row,col,value;

}

Method 2: Using Linked Lists
In linked list, each node has five fields. These fields are defined as:
e Row: Index of row, where non-zero element is located
e Column: Index of column, where non-zero element is
located
Value: Value of the non zero element located at index
Down: Address of next non-zero in the same Column

Right: Address of next non-zero in the same row

4 cvo
. yl5la(8]. [o]o FH

down/up right

ADT SparseMatrix
{
Instances:
A set of triples, <row, col, value>
/lwhere row and col are integers and form a unique combination.

Operations:

void create(n);//creates a SparseMatrix that can hold N non-zero elements information.

SparseMatrix transpose(SparseMatrix A); /1t return the matrix produced by

interchanging the row and column value of every triple.

SparseMatrix add(SparseMatrix A, SparseMatrix B); //if dimensions of A and B are the
same return the matrix else return error.

SparseMatrix multiply(SparseMatrix A, SparseMatrix B); // if number of columns in A
equals number of rows in B return the matrix C produced by multiplying A by B according
to the formula: C[i][j]= Z(A[i][k]*B[k][j]) where C[i][j] is the (i,j) th element else return
error.

¥

Sparse Matrix Transpose:

To transpose a matrix we must interchange the rows and columns.

Example: Sparse matrix A, Transpose Sparse Matrix B

[6]
[7]
[8]

NOWNEFEOITWOO
QT WWNMNDNNPFP,POOO
O NOOUIF,REFM~MOO

We move these triples consecutively in to the transpose matrix, as we insert new
triples, we must move elements to maintain the correct order. We should “find all the
elements in column 0 and store them in row 0 of the transpose matrix, find all the

elements in column 1 and store them in row 1 etc.

Example:Implement a program for finding Sparse matrix and transpose of sparse matrix

#include<iostream> cout<<"the sparse matrix ";
class matrix for(i=0;i<k;i++)
{ {
int a[20][20],b[20][20],c[20][20],i,j,x,y,m,n; cout<<"\n";
public: for(j=0;j<3;j++)
void input(int,int); cout<<bl[i][jl;
void sparse(); }
void transpose(); }
L void matrix::transpose()
void matrix::input(int x,int y) {
{ inti,jk,n;
m=x; n=y; c[0][0]=b[O][1];
cout<<"enter the matrix: \n"; c[0][1]=b[0][O];
for(i=0;i<m;i++) c[0][2]=b[0][2];
for(j=0;j<n;j++) k=1;
cin>>ali][jl; for(i=0;i<b[0][1];i++)
cout<<"the matrix is: \n"; for(j=1;j<=b[0][2];j++)
for(i=0;i<m;i++) if(i==b[j][1])
{ {
cout<<"\n"; c[k][0]=b[jl[1];
for(j=0;j<n;j++) c[k][1]=b[j][0];
cout<<al[i][jl; c[k][2]=b[j][2];
} k++;
} }
void matrix::sparse() cout<<" Transpose of sparse matrix:”;
{ for(i=0;i<k;i++)
int k=1; {
for(i=0;i<m;i++) cout<<"\n";
{ for(j=0;j<3;j++)
for(j=0;j<n;j++) cout<<cl[i][jl;
{ }
if(a[i][j]!=0) }
{ int main()
b[k][0]=i; {
b[k][1]=j; int m,n;
b[k][2]=ali][j]; matrix ob;
k++; cout<<"enter order of matrix: \n";
} cin>>m>>n;
} ob.input(m,n);
} ob.sparse();
b[0][0]=m; ob.transpose();
b[0][1]=n; return O;
b[0][2]=k-1; }

Sparse Matrix Multiplication:

Given A and B where A is m(In and B is n(1p, the product matrix D has dimension m{Jp.

Its <i, j> element is
n-1
dij = Z‘bikbkj

k=0
forO<i<mand0<j<p.

In general, you multiply a values at row 'i' in matrix A with a column in the matrix B and
store the sum of the row operation as a result in the resultant matrix.

However, since this problem involves sparse matrices, we can ignore the multiplication with
the column in matrix B if the value in matrix A is O(zero). This small optimization helps us in
avoiding K operations where K is the number of rows in the matrix B or the number of columns in
the matrix A.

i< A.rows; j<B.cols; k< A.cols/B.rows
sum += A[][K]*BIK]LI;
C[iI[] = sum;

100] [111 111
100 [00O0f= (111
100] (000 111

Figure 2.5: Multiplication of two sparse matrices

Matrix A Matrix B Matrix C=A*B
Row |Column Row |Column Row |Coluomn
1 2 1 3 1 1
4 F,

Cl1][4] = A[1][2]*B[2][4]= 10%23 =
Cl1[1]= A[1][4]*B[4][1]= 12*20=
Cl1][2]= Al1][a]1*B[4][2]= 12*25 =
C[3ll3]= Al3][3]*B[3][3]= 5*3 =
C[4][3]= Al4][1]*B[1][3]= 15*8 =
Clal[4]= Al4][2]*B[2][4]= 12*23=

SYLLABUS: UNIT-II

Templates in C++: Template Functions, Template Class, Using Templates to Represent
Container Classes, Sub typing and Inheritance in C++, The Stack Abstract Data Type,
Evaluation of Expressions (Postfix Notation), convert Infix to Postfix, The Queue Abstract Data
Type, Circular Queues

[C++ Templates:

Templates are powerful features of C++ which allows you to write generic programs.
Using templates you can create a single function or a class to work with different data
types

Templates are often used for the purpose of code reusability and readability of the

programs.
The concept of templates can be used in two different ways:

1. Function Templates

2. Class Templates

1. Function Templates:

A function template works in a similar to a normal function, with one key difference.

A single template function can work with different data types at once but, a single normal
function can only work with one set of data types.

Normally, if you need to perform identical operations on two or more types of data, you

use function overloading to create two functions with the required function declaration.

Declare a function template:

e A function template starts with the keyword template followed by template parameter/s
inside < >(angular brackets)

Syntax: template <class T>
T function_name(T arg)

{

¢ Inthe above code, T is a template argument that accepts different data types (int, float),

and class is a keyword.

e When, an argument of a data type is passed to function_name(), compiler generates a new

version of function_name() for the given data type.

2. Class Templates:

Like function templates, you can also create class templates for generic class operations.
Normally, you would need to create a different class for each data type OR create different
member variables and functions within a single class.
e Class templates make it easy to reuse the same code for all data types.
Declare a class template:

Syntax: template <class T>
class className

{
public:
T data;
T function_name(T arg);
¥
Create a class template object:
e You need to define the data type inside a < > when creation of class template object.
Syntax: className<dataType> classObject;
For example: className<int> classObject;
className<float> classObject;
className<string> classObject;
Example : Simple calculator using Class template, Program to add, subtract, multiply and divide

two numbers using class template

#include <iostream.h> void display ()

template <class T> {

class Calculator cout << "Numbers are: " << numl <<™
and " << num2 << "." << endl;

{ cout << "Addition is: " << add();
private: cout << "Subtraction is:" << subtract();
T numl, num2; cout << "Product is: " << multiply();

public: cout << "Division is: " << divide();

Calculator(T nl1, T n2) }

T add() { return numl1 + num2; }
{ T subtract() { return numl - num2; }
numl = nl,; T multiply() { return num1 * num2; }
numz2 = n2,; T divide() { return num1 / num2; }

} ¥}

void main()

{ Output
. Int results:

Calculator<int> intCalc(2, 1); Numbers are: 2 and 1.

Calculator<float> floatCalc(2.4, 1.2); Addition is: 3
Subtraction is: 1
Product is: 2

cout << "Int results:" << endl, Division is: 2

intCalc.displayResult(); Float results:

Numbers are: 2.4 and 1.2.

Addition is: 3.6

Subtraction is: 1.2

endl; Product is: 2.88

Division is: 2

cout << endl << "Float results:" <<

floatCalc.displayResult();
}

[Container Classes:- }

A container class is a data type that is capable of holding a collection of items.

In C++, container classes can be implemented as a class, along with member functions to
add, remove, and examine items

If it is a container class no need to write implementation for operations, directly perform
the operations using predefined functions by include library file (.h file)

There are several ways to allocate the memory for container classes like Arrays, Linked

List, VVector ...etc

Ex: String is a container class, so by including string.h file directly perform the operations

like strlen(),strcmp(),strrev(), .. etc

Templates to Represent Container Classes:

template <class T>
class Bag
{
T *a;
int count;
static int Capacity;

Bag(int Capacity=20);
void insert(T item);

T remove();

int bagsize();

Container Class Program: Bag operations (Bag.h)

class Bag

t
int *a;
int count;
static int Capacity;

Bag(int Capacity=20);
void insert(int item);
int remove();
int bagsize();

j

Bag::Bag(int Capacity=20)

a= new int[Capacity];
count=0;

int Bag::bagsize()

return (count);

void Bag::insert(int item)
{
if(bagsize()<Capacity)
{
data[count]=item;
count++;
¥
¥
int Bag::remove()
if(bagsize()>0)
{

int item=a[count];
count--;

}

return item;

}
void display()
{

for(int i=0;i<bagsize();i++)

{
¥

cout<<a[il;

[Sub typing and Inheritance in C++:-]

e Inheritance allows the child class to acquire the properties (the data members) and

functionality (the member functions) of parent class. OR IS-A relationship is also called

Inheritance.

Child class: A class that inherits another class is known as child class, it is also known as

derived class or subclass.

Parent class: The class that is being inherited by other class is known as parent class,

super class or base class.

e Implementation of public inheritance is called Sub Typing

Advantages: The main advantages of inheritance are code reusability and readability.

ACCEeSS

Public

Protected private

Same class

Yes

Yes Yes

Derived classes

Yes

Yes No

Outside classes

Yes

No No

Syntax of Inheritance:
class parent_class

{
//Body of parent class
b

class child_class : access_modifier parent_class

//Body of child class
h

Types of Inheritance in C++:
1) Single inheritance
2) Multilevel inheritance
3) Multiple inheritances
4) Hierarchical inheritance
5) Hybrid inheritance

Multiple Inheritance Hierarchica

Class A

Class C

Multilevel Inheritance
1. Single inheritance
e In Single inheritance one class inherits one class exactly.
e For example: Lets say we have class A and B
=B inherits A
2. Multiple Inheritance
e In multiple inheritances, a class can inherit more than one class. This means that in this
type of inheritance a single child class can have multiple parent classes.
For example: Lets say we have class A, class B and class C
- C inherits A and B both

Multilevel Inheritance

In this type of inheritance one class inherits another child class.
For example: Lets say we have class A, class B and class C
—>C inherits B and B inherits A

Hierarchical Inheritance

In this type of inheritance, one parent class has more than one child class.
For example: Lets say we have class A, class B, class C and class D
->Class B, C and D inherits class A

Hybrid Inheritance

Hybrid inheritance is a combination of more than one type of inheritance, that follows
multiple and hierarchical inheritance both can be called hybrid inheritance.
For example, Lets say we have class A, class B, class C and class D

—->B and C are Childs of parent class A, and class D is child of both B and C

Example of Single inheritance:

#include <iostream> int main()
class A

{
public:

AO{

class B:

{
public:

B() {
}

{
//Creating object of class B

B obj;
cout<<"A class; } return 0;

¥
public A Output:

A class
cout<<" B class"; } B class

Example of Multiple Inheritances:

#include <iostream> C(){ cout<<"Cclass";}

class A

{
public:

AO{

class B

{
public:

B(){
)3

class C

{
public:

int main()
cout<<"A class; }
//Creating object of class C
C obj;
return O;
}
cout<<" B class"; } Output:
A class

: public A, public B B class

C class

Example of Multilevel inheritance:

class A

{

public:

A(){ cout<<"Aclass; } int main()

Y {

class B: public A //Creating object of class C

{ C obj;

public: return O;

B(){ cout<<"B class";} }

b Output:

class C: public B

{ A class

public: B class
C(){ cout<<” Cclass"; } C class

Example of Hierarchical inheritance:

class A

{ int main() {
public:

A(){ cout<<"Aclass; }
} B obj1;

//Creating object of class B,C,D

class B: public A C obj2;
{ D obj3;

public:
B(){ cout<<"B class"; }

j3 }
class C: public A Output:

{ A class
public:

C(){ cout<<"Cclass";}
i A class

return O;

B class

class D: public A C class

{ A class
public:

D(){ cout<<" D class";}
3

D class

Example of Hybrid inheritance:

class A class D: public B, public C

{ {
public: public:
A(){ cout<<"Aclass; } D(){ cout<<"Dclass";}

class B: public A int main()
{ {
public: //Creating object of class D
B(){ cout<<"B class"; } D obj;
H return 0;
class C: public A }
{ Output:
public: A class
C(){ cout<<"Cclass"; } B class
H A class
C class
D class

[Stack Abstract Data Type:- j /

Stack is a linear data structure in which insertion and

deletion can perform at the same end called top of stack.

When an item is added to a stack, the operation is called

push, and when an item is removed from the stack the

operation is called pop.

Stack is also called as Last-In-First-Out (LIFO) list which means that the last element
that is inserted will be the first element to be removed from the stack.
When a stack is completely full, it is said to be Stack is Overflow and if stack is

completely empty, it is said to be Stack is Underflow.

The basic operations performed in a Stack:
1. Push()

2. Pop()

3.peek()

ADT Stack

{

instances:

Elements are stored in array called STACK, insertion and deletions can
perform at TOP end.

operations:
Stack(int size) - initialize STACK with size and TOP= -1
ISEmpty() — returns true if stack is empty otherwise false
IsFull() — returns true if stack is full otherwise false
push(x) — add element x at the top of the stack
pop() remove top element from the stack
peek() get top element of the stack without removing it

}
Algorithm for PUSH operation

1. Check if the stack is full or not.

2. If the stack is full, then print error of overflow and exit the program.

3. If the stack is not full, then increment the top and add the element at top location.

empty stack push[10) push|20] push(30) push(40)

pushing elements into the stack

Algorithm for POP operation

1. Check if the stack is empty or not.
2. Ifthe stack is empty, then print error of underflow and exit the program.

3. Ifthe stack is not empty, then print the element at the top and decrement the top.

40
30 30
20 20
10 10

item = 40 item =30

20

10

10

item = 20

top=-1

itern =10 empty stack

poping elements from the stack

Example: Implementation of Stack ADT using Array’s

#include<iostream.h>

class stack
t
int *s;
int top;
int size;
public:
stack(int n)
{
s=new int[n];
top=-1,
size=n;

}
bool IsEmpty() {return (top==-1); }
bool IsFull() {return (top >= (size-1)); }
void push(int);
void pop();
void display();

}

void stack::push(int item)

{
if(IsFull())

cout<<"Stack is full(Overflow)";

{

else

top=top+1,;
s[top]=item;

void stack::pop()
{

int item=0;
If(ISEmpty())

cout<<"stack is
empty(Underflow)";
else

{

item = s[top];
top=top-1;
cout<<item;

}

void stack::display()
{
if(top==-1)
cout<<’stack empty”’;
else
{
for(int i=top; i>=0; i--)
cout<<stk[i]<<” «;

}

void main()

{
stack sa(5);

sa.push(10);
sa.push(20);
sa.push(30);
sa.pop();

sa.pop();
sa.push(40);
sa.display();

Applications of Stacks

v' Stack is used to reversing the given string.

v' Stack is used to evaluate a postfix expression.
Stack is used to convert an infix expression into postfix/prefix form.
Stack is used to matching the parentheses in an expression.

In recursion, all intermediate arguments and return values are stored on the

processor’s stack.

[Evaluation of Expressions:- }

An expression is defined as the combination of operands (variables, constants) and
operators arranged as per the syntax of the language.
An expression can be represented using three different notations. They are infix, postfix
and prefix notations:
> Prefix: An arithmetic expression in which we fix (place) the arithmetic operator before (pre)
its two operands. The prefix notation is called as polish notation.
Example: + AB
-2 Infix: An arithmetic expression in which we fix (place) the arithmetic operator in between the
two operands.
Example: A+ B
> Postfix: An arithmetic expression in which we fix (place) the arithmetic operator after (post)
its two operands. The postfix notation is called as suffix notation OR reverse polish notation.
Example: AB +
Operator Precedence: When an expression consist different level of operators we follow it.
We consider five binary operations: +, -, *, / and (exponentiation). For these binary operations,
the following in the order of precedence (highest to lowest): ~, *, /, +, -
Operator Associativity: When an expression consist more than same level precedence
operators we follow it.
Basically we have Left to Right associativity and Right to Left Associativity. Most of the
operators are follows Left to Right but some of the operators are follow Right to left
Associativity like Unary(+/-), ++/-- ,Logical negation (!), Pointer and address (*,&), Conditional

Operators and Assignment operators(=,+=,-=,*=,/=,%=).

x=alb-c+d*e-a*c
For example, a =4, b =c =2, d = e = 3 then the value of x is found as
((412)-2)+(3*3)-(4*2)

=0+9-8

EVALUATION OF POSTFIX EXPRESSION:

The standard representation for writing expressions is infix notation. But the

compiler uses the postfix notation for evaluating the expression rather than the infix

notation. It is an easy task for evaluating the postfix expression than infix expression
because there are no parentheses. To evaluate an expression we scan it from left to right. The

postfix expression is evaluated easily by the use of a stack.

To evaluate a postfix expression use the following steps...
1. Read the poststring from left to right
2. Initialize an empty Stack
3. Repeat until end of the poststring

I If the scanned character is operand, then push it on to the Stack.
If the scanned character is operator (+ , - , * , / etc.,), then pop top two
elements from the stack, perform the operation with the operator then push
result back on to the Stack.
4. Finally! We have one element in the stack, perform a pop operation and display the

popped value as final result.

Postfix Expression is53+8 2 - «

Symbol Stack Evaluation

Initially

Stack is empty

5
Push(b)

3
5
Push(3)

8
Valuel=pop()

Value2=pop()
Result=Value2+Valuel
Push(Result)

Valuel=3
Value2=5
Result=5+3=8
Push(8)

8
8
Push(8)

2

8

8
Push(2)

6
8

Valuel=pop()
Value2=Pop()
Result=Value2-Valuel
Push(Result)

Valuel=2
Value2=8
Result=8-2=6
Push(6)

Valuel=6

48 Value2=8

Valuel=pop() Result=8*6=48
Value2=Pop() Push(48)
Result=Value2*Valuel
Push(Result)

End of Expression Final Result is 48
48

Result=pop()

Conversion of INFIX to POSTFIX:

Procedure to convert from infix expression to postfix expression is as follows.

1. Initialize an empty stack
2. Push “(“onto Stack, and add ““)” to the end of Infix string.
3. Scan the Infix string from left to right until end of the infix

i If the scanned character is “(“‘, pushed into the stack.

ii. If the scanned character is *)”, pop the elements from the stack up to
encountering the “(*, and add the popped elements to postfix string except
parentheses.

If the scanned character is an operand, add it to the Postfix string.

If the scanned character is an Operator, compare the precedence of the
character with the element on top of the stack. If top of Stack has lower
precedence over the scanned character then push the operator into the stack
else pop the element from the stack and add it to postfix string and push the

scanned character to stack.

Example: a * (b + ¢) *d)

Token Postfix String

[Queue Abstract Data Type:-]

e Queue is a linear data structure in which elements can be inserted from one end

called rear and deleted from other end called front

The deletion or insertion of elements can take place only at the front or rear end
called dequeue and enqueue. The first element that gets added into the queue is the
first one to get removed from the queue. Hence the queue is referred to as First-In-
First-Out list (FIFO).

rear

ADT Queue

{

by

Instances:
Elements are stored in array called QUEUE, insertion can perform at REAR

end and deletions can perform at FRONT end.

Operations:
Queue(int size) -initialize QUEUE with size and FRONT=REAR= -1
ISEmpty() - returns true if Queue is empty, otherwise false
IsFull() — returns true if Queue is full, otherwise false
enqueue(x) — add element x at rear end of the Queue
dequeue() — remove element at front end of the Queue

Operations performed on Queue:

There are two possible operations performed on a queue. They are enqueue and

dequeue.

v enqueue: Allows inserting an element at the rear of the queue.

v dequeue: Allows removing an element from the front of the queue.

Algorithm for ENQUEUE operation

. Check whether queue is FULL. (rear >= SIZE-1)

If it is FULL, then display an error message "Queue is FULL!! Insertion is not
possible!!!™ and terminate the function.
If it is NOT FULL, then incrementrearvalue by one (rear++) and

set queue[rear] = value.

Algorithm for DEQUEUE operation

. Check whether queue is EMPTY. (front == -1)

If it is EMPTY, then display "Queue is EMPTY!!! Deletion is not possible!!!" and
terminate the function.

If it isNOT EMPTY, then display queue[front] as deleted element, increment
the front value by one (front ++). If we are deleting last element both front and rear are

equal (front == rear), then set both front and rear to '-1' (front = rear = -1).

Let us consider a queue, which can hold maximum of five elements.

—>Initially the queue is empty.
FRONT REAR

¥
-1 0

Empty Queue

FRONT REAR

Ny

EnQueue first element

-1 1

FRONT REAR

v v

-1 0 1 2

EnQueue

FRONT

-1 0 1 2
EN E3 N EN

EnQueue

An element can be added to the queue only at the rear end of the queue. Before
adding an element in the queue, it is checked whether queue is full. If the queue is full, then
addition cannot take place. Otherwise, the element is added to the end of the list at the rear

end. If we are inserting first element into the queue then change front to 0 (Zero)

Now, delete an element 1. The element deleted is the element at the front of the

queue. So the status of the queue is:

FRONT REAR

il
=]

3

DeQueue last element

FRONT REAR

Y
N 0

Empty Queue

When the last element delete 5. The element deleted at the front of the queue. So the status

of the queue is empty. So change the values of front and rear to -1 (front=rear=-1)

The dequeue operation deletes the element from the front of the queue. Before
deleting and element, it is checked if the queue is empty. If not the element pointed by front

is deleted from the queue and front is now made to point to the next element in the queue.

Applications of Queue:

Serving requests on a single shared resource, like a printer, CPU task scheduling etc.

In real life scenario, Call Center phone systems uses Queues to hold people calling them in
an order, until a service representative is free.

Handling of interrupts in real-time systems. The interrupts are handled in the same order as

they arrive i.e First come first served.

Example: Implementation of Queue ADT using Array’s

#include <iostream.h>
#include<stdlib.h>

class Queue

{

private:

int *Q, front, rear, size;

public:

j3

Queue(int size);

void enQueue(int item);
void deQueue();

void display();

Queue::Queue(int n)

Q =new int[n];
front =-1;

rear = -1;

size = n;

}

void Queue :: enQueue(int item)

{

if(rear >=size - 1)
cout << "Queue is full";
else

if(front == -1) front = 0;

rear++;
Q[rear] = item;
cout << "Inserted " << Q[rear];
}
}

void Queue :: deQueue()

{

if(front == -1)

cout << "Queue is empty" << endl;

else

{

cout << "Deleted: " <<Q[front];

if(front >= rear)
{
front =-1;

}

else
front++;

rear = -1;

void Queue :: display()
{
if(front == -1)
cout << "Empty Queue" << endl;
else
{
cout << "\n Front -> " << front;
cout << "Queue Elements are: ";
for(int i=front; i<=rear; i++)
cout << Q[i] <<
cout << "\n Rear -> " << rear ;
}
}

void main()

{

Queue qu(b);

qu.enQueue(10);
qu.enQueue(20);
qu.enQueue(30);
qu.enQueue(40);

qu.display();
qu.deQueue();

qu.deQueue();
qu.deQueue();

qu.display();

Circular Queue:

e Circular Queue is a linear data structure in which the operations are performed based on
FIFO (First In First Out) principle and the last position is connected back to the first
position to make a circle.

Y F ront
Need of Circular Queue

e In a normal Queue, we can insert elements

until queue becomes full.

If queue becomes full, we cannot insert the

next element until all the elements are deleted.

For example consider the queue below... After — Rear

inserting all the elements into the queue.

Queue is Full

|25|30|51 |60|85|45|88|90|?5|95|

front reqar

Now consider the following situation after deleting three elements from the queue...

Queve is Full (Even three elements are deleted)

1 | [feo]ss]«sfss]so]7s]os
fr{!*ﬁ re!:r

This situation also says that Queue is full.
We cannot insert the new element because; 'rear’ is still at last position, Even though we
have empty positions in the queue we cannot make use.

This is the major problem in normal queue.

To overcome this problem we use circular queue.

Operations on Circular Queue:

e Front: Get the front item from queue.
o Rear: Get the last item from queue.
e enQueue(value) This function is used to insert an element into the circular queue. In a
circular queue, the new element is always inserted at REAR position.
Steps:
1. Check whether queue is Full or not
Check ((rear == SIZE-1 && front == 0) || (rear == front-1)).
2. Ifitis full then display Queue is full.
3. If queue is not full then, check
if (rear == SIZE — 1 && front !=0) if it is true then set rear=0 and insert element.

deQueue() This function is used to delete an element from the circular queue. In a circular

queue, the element is always deleted from FRONT position.
Steps:
1. Check whether queue is Empty or not means check (front==-1).
2. Ifit is empty then display Queue is empty.
3. If queue is not empty, Check
if (front==rear) if it is true then set front=rear= -1

else check if (front==size-1), if it is true then set front=0 and return the element.

Example: Implementation of Circular Queue ADT using Array’s

#include <iostream.h>
#include<stdlib.h>
void enQueue(int item)
class Circular_Queue {
{ if ((front == 0 && rear >=size-1) ||
private: (front == rear+1))
int *cq;
int front, rear, size; cout<<"Queue Overflow \n";
public: return;
Circular_Queue(int n) }
{ else
cq = new int[n]; {
rear = front = -1; if(front==-1) front=0;
size = n; rear = (rear + 1) % size;
} cq[rear] = item;
cout << "Inserted: " << cq[rear];
}
}

void deQueue()

if (front == -1)
{
cout<<"Queue Underflow\n";
return ;
}

cout<<"Deleted : "<< cq[front];
if(front == rear)
{
front =-1;
rear = -1;
}

else

front = (front+1) % size;

}
void display()
{

inti;
if (front == -1)
{

cout<<"Queue is empty\n";

return;

}

else

{

cout << "\n Front -> " << front;
cout << "\n Elements -> ",
for(i = front; i '=rear; i= (i+1) % size)
cout <<cq[i] <<"";
cout << cq[i] <<™" ™
cout << "\n Rear -> " << rear;
}
}
}

void main()

{
Circular_Queue qu(4);

qu.enQueue(10);
qu.enQueue(20);
qu.enQueue(30);
qu.enQueue(40);

qu.display();

qu.deQueue();
qu.deQueue();
qu.deQueue();

qu.display();

qu.enQueue(50);
qu.enQueue(60);
qu.display();

}

Implementation of Queue using Stacks:

For Queue we are having two ends, one is called FRONT end and other called REAR

end

For Stack we have only one end called TOP.

So, for implementing the queue using stack we need TWO STACKS, one for insertion

other for deletion.
enQueue(int item):
1. Push item to InputStack S1

deQueue():

1. IF (both InputStack S1 and OutputStack S2 are empty) THEN error.

2. IF (OutputStack is empty)

Pop all elements from InputStack and push them into OutputStack (one element at a time).

3. Pop element from OutputStack and return.

Initially we have two empty stacks S1, S2 and corresponding pointer variables TOP1,
TOP2.
First, we are reading the elements and pushed into the stack S1, for every push operation

we need to increment the TOP1 value.

Algorithm enqueue(item)

{
If(TOP1>=size-1)
cout<<"Queue is Full(Overflow)";
else

{
TOP1=TOP1+1;

S1[TOP1]=item;
}
}
Now we want to delete an element according to queue operation, the first inserted
element processed first.
Here it is not possible if we use only one stack, so transfer all the elements from stacks
S1to S2.

Now we can delete the top element in stack S2 using TOP2.

After performing delete operation transfer all the elements from stack S2 to S1 stack.

Now, if we want to insert an element, directly pushed into stack S1
So, for very deletion operation we need to transfer the elements from one stack to
another stack.

For deletion the following operation is needed.

Algorithm deQueue()
{
while(TOP1 I1=-1)
{
TOP2 =TOP2 +1;
S2[TOP2] = S1[TOP1];
TOP1=TOP1-1;
}

cout<<"Deleted element is: "<<S2[TOPZ2];
TOP2 =TOP2 -1,

while(TOP2 I=-1)

{
TOP1 = TOP1 +1;
S1[TOP1] = S2[TOP2];
TOP2 = TOP2 -1;

Priority Queue:

o Priority Queue is a data structure having the collection of elements, which is associated
with priorities.
An element with high priority is dequeued before an element with low priority.
If two elements have the same priority, they are served according to their order in the
queue.
ADT Priorty_Queue
{
Instances:
Finite collection of elements associated with some priority
Both front and rear with in max size
Operations:
Create(); ISEmpty(); IsFull(); enQueue(item);
deQueue(); display();
}
Basic Operations in Priority Queue:
It allows two operations deleteMin o | et
- Priority Queue
1. Insert (enQueue)
2. DeleteMin (deQueue)
e The smaller element in priority Queue having high priority, so find the smaller element
and delete it first.
Implement priority queue:
Array: A simple implementation is to use array of following structure.
e insert() operation can be implemented by adding an item at end of array in O(1) time.
e DeleteMin () operation can be implemented by first linearly searching an item, then
removing the item by moving all subsequent items one position back.
Linked List, time complexity of all operations with linked list remains same as array. The

advantage with linked list is DeleteMin() can be more efficient as we don’t have to move items.

Implementation Insertion Deletion

Unordered array O(1) O(n)
Ordered array O(n) O(1)
Linked list O(n) 0O(1)
Binary Heap O(logn) O(logn)

uit-w ©

—

%&\\ab\ﬂ\ T -
v A~

WebvoducHon, Sinde Linked Ligr, Civesar \okad Wny

Doubl aked \ar 5 Sleex k\r\\% Unred Uay, Quene W‘\“"Q
boked \Wne, P@\“M‘W\.\a& \N“Q Unkes URk, Seagae Sodon

Q\arrsr ETR¥ANZed W, Terglale Qopn Crasn.

(_\
A_f**(c)d \\QS\:\G(\ -

- —A\s\fcux& hayt N gotne S he datheces Wke

< - o AW
W) Belore e Carept \ohd oy PI0Cean, Nea= Ao Qe e RO O

e & e memm God)

s . . Sy - loes, Voo, -~

T Trpention ama Delefion & clemrexdh M elween YeQuTe
e ok & elevresiih Neead Yo Srasqe e FeRBMATh
e L:\'S\‘@&l:\ UG\ QA QONest Case A\ “repo Wcﬂm S wpeR
ynarie e Necakien ! () ama Deoletadnsn (detete) -

T A rerdhen 2 Delebyon e&’. clempantt AN bebseon Mo tesl My

Q}QN‘CQQ dne Pera Ty, Sune Q‘Nlﬂ‘%\ﬂ e Qdd werREA .

F Linked Linke Sn o \ireas Colehgny ™ dadao <fesrrasetR , AnRe

E\QWG\X#\ QX QCL\\SLA Nodes - FQ"(EL eath Toda W Al \\G.\‘s\'!%

e et

N I\ N e
I\ ¥ VA Whed e Afcre fre ol\orcernk Uinferrseanon)

=2 o ‘-RGL\G\ Whed da Sexe e Qddwers W ey Tode ¥
Aosere. data ‘\"‘Q@Q A Uk N Q. Oy nivesy -

e lare Tode Iy dre. Linz (A el X\cﬁw@ Qﬁ\“ etk Teter, A

e \Wrme Fevn wiw Crarper e WLV (o) -
e PN e |

Aoy tre WAL

N Risfe s dne addw<ph B Ane &‘\O\Y’e\‘“ ™Neda_

—

TE G == L e dre W ey e

o |
Wrade | VY ode ™ enisie

; o a Tt
oy L BT \ ~ ho \N\\L
‘\o& Ned e

D e

T Reerenharivn 1

7 Daka ARCR\EN

Arsen dre 0adwar & Temyi
Mol) \Q\\\Uf\ \)\ Q.

= Biar W Whed Ao phexe Oddve A Crak ‘ 1 D 2 \
oL
% Slew nodo - e = .
3 %
Neve *Q{\')\\» =2, N e &\QS@\E\‘\I Tede Y = 0
Aexe n. Ak Addwepk W A, e\urregmt R &N, > G \
— kv © e E
-
e

TEPRA Yy Protedume gt We Teath A PEONSD ;) Whe
e

Slomemt Ay Ane Rpds

* Resvems ben dnay Pre Teden N e liared WAL Teed ek

be CofrecuMue R \platieny.

Ne “‘“NQ Ao ahan and Dealls oo < .

- . FEECS
— I e et TvQdd ey Nede Wndo Q‘\(TQO@Q 'Q

VA W dve Teenery | e Hixar Tind Wmoned W”\
(Free ARRaes) dren Aleven dhe VNKeveradien

Commpuley W\ pealickain Q Way & N free ey NCRW'N

(Smared can) « wae WAk W Caled freapoo) - Tne \ane

WA peinied D) fhe NerieRe Calea AVALL L TF Riesen

Qaddwenan & Ly Srne ARG, ob L

D€ e AVQKU‘& ORI - ey Sramey Nreapos) et ‘\N\““%NQ larrae
Ye

R\“\\L ‘7‘\ P@\N\v‘% Y Nk -—‘\“{QS_ mm"ﬁ\ Ce\

Cole % I ‘

\\Qk*m% AN Yerrnal N SPo- Tty e ferdn , IR Protasa
=

B Calle A St \:uaz Lo ene

*Q\k Qd ERFteak QL PRTTNSE Qray DEvRR Te RS oy}

T ~ S R AR Py = W MNede 3

delete Opevadovi- To deproy Ave Q\Q‘\W*\ el alotoded ®

Jastele \Q,\r{ya&— amd Lgee dne RApate OQaugiea Q\;{)@-&.
— [W QKQ\LQE:\-\-S e\&\m‘v’w\‘\“ e W‘&\%W ook
Rx - delete P g

h AN S . \
Y- A*\&Q“GNQ Are ewy tode It Ane oy i \N‘S\Q e
o e e T
& Ry e dave Dieva ol |
2o Dedr e Bok Feld Sline. o ~srday - @%

W Rev dee Previcuy Tede \mw o ,%:B?
he Cosvemy: Poda,

*) N
DQ\Q\-\Y‘% e tede Brave Ane Gnde \[Q‘&‘Q cOLSY |

\- ‘XA@%&R\‘%\{N{\ N N ‘o dodede o]+~

R Q&P\A e Caneyemns DA N ’Q‘\Q\‘A —

1Q
T T Prdgus Tede mvteld
e Quloneain cal\y mm&%«q T \nie
S Delete W Cuvemy Tedy - m\‘

Smale Bered Gay 0 Chaiin e
MINANANANTTY I ANN NNANANY

& ; N . ¥ B s sk
— Sinde Smred \inr B o) Seeple yee 8 Lnkad Ny Ve ey

co i Tedu Comtaimy ore dade Dask amd Onee Qg Pasi—
Peling W ¢ -

C\ORR Ao

S

s

e | e
vor deday TOAw

3 ChAYD ComATRTR Zewo oy g M. ¥ eds Rt
S GUO N
. e Sdade()
PP W 0 = e

Srery = B
o —>\ ;
O IS R ey g WY = e
= Q‘\ﬁl\(\)\ can ‘o \mp\emamkc\ R Q:m&x
G Eiend QohA
QY Nepted logpnen
c\apn Aeayn @ clany Chalmn
9
d S
A\orr Nede % N
LSend Qaas Cran G Cann Teda
Pm\rq\%e 2 e § ey sata
N\ o * 7
p wede Nk
1, Node “K\UmWK ¢ . W\u\\x)
9 . >
Clopr Ahasm o .
--- 43

* m\f@(&\‘ﬁ @ Werked GpY 2-

~ N \ < de &
- Qrm\f@mmn o Untat BaS sneonA cmcc'ﬂ«&\w\ e eep

— Unkea Gpv Conboimn <he POVOINY BIRSY WSS

=\ N
e aadicenn R Ane T ‘T‘_\“\Q ede VD e SR

B Mhe \anr meds e Ling Dield caaxesn xS\

W Qure "&cx\”\'\rﬁ ove Poniey PTR Loy Q\QQ&S}&T‘% A MNedep-
%\6@5\ oD Tranesgo) D
Node % PTR
=% PTR = P\RSYY
Repeok wile BTR L= NoLL
H\D‘?\Q Potean PTR - dadely

2t PR = e o Lk
o \acp

N ST v->
1‘\ 4
t’]ﬁ)\ BYR PTR ‘P‘ﬁ{ PreswWuLL

SNV o
— CSQ\\“NV\\\‘\R NoMpbel &8 fedsx W a Uatv

%\3& LRSI oo Neden Y

§

S Casmy = Q)

TeAe ¥ PTR =PIRsY 3

Repeakr e PTRL= oL
ST conmt = Qaue: Y LG

Seat PT ~ Dt N .
wnd \Q&\.\bo R PTR-sune;
J

} Primy Loy 3
¥ Seowcd an <esresce 1 o v 2-
e \R Nede

~TTheve Qwe Yax Quiaastep Sor Seanth

Qddwenn whem Reacrany \\7\ Seuec esala\ Q\\\Q?&&SS\ e WO LW .

Pantitnm Seae (Srer)

\

Nede % POt = nULL o FETR = FARSY §
RQ‘}QQ‘_ WS \e PR \ =Nl
W Wern == PTR->dotS e

Wy P 1= BYR
<\pe

Ly PTR T PTR > \AnK]
e \owp

% ?“S'\x\-en\Qa;g b
it Qo\letriyn &
Opessad ony,
Qyeate () 4 foreake am &m\\é\“ Uap PEIRSTS oW

Acka, e\emrRavA

\Nﬁ“¥~‘>‘lﬁk‘itcm3
Venesst - A C &s;em')
rrent _Pes (Pes, Tvrem) ¢

delefa_ \D:% €y 2
Aelele e)
Qelete_ vos (pon) s,
3 c\ir\‘?\o»& Q)

9

F Inpeschwm aF \x&\ﬂf\\rs% o e \B% 5~

— Toy UNRewdv fevs N TN e Vo
1 N

* Qyeake a Wede (cus) A 9
oL i'f‘\'h&““\- Ane Valve = Q code I daka 'C;Q\é (LQ&S\\Y——}d,Q&({)
3 Ahe oo mede Bmk Dield iy pyere 0ddwean S e

Yoot Mode QQ,**(—% Uy <frrk

NN Mne ess wedes W the 7&‘(@.&(‘)\:\”&‘% ede W e SR

Crampe e BIRST An Gy R

PARRT Tt ‘De&(‘i tresey)

\i Qj\(ag&\m e Nadel Coled

Ry (G vﬁ-q_ug(- ‘\R}J& "\Qd& KS\::N‘(‘(QN\\’ ‘N:dﬂ
\‘\gwgv;? ey Cure -S> doka, = § 3r@m W«\k
W L
¥ ek Qx> \ny = ‘Q’\Th\')
Set- ~SP WA = Cwy ,
Koasret\e t-

Pid el TeRs Qm*vef\ﬁ 5 v VYoo Bt

e I B S e e ey
— Blatske dQpe Moo W ey | Caronk Sty S gyt
Aaka. o =5
s\)
DA Ane Y _ Aol
Desonneds Q- ‘3&3“\,5\,5\3\;1% & e Bnt \g.k NQ
m\jj—e\g{\@
Rt

{D{@

B\RST

-—

¥ WnRes ey ok end & \GAL $- @

— Tex ‘V\u\\\\ we Qwe (\Q\Q‘Q are. PHwher PTR S Qccea N‘K
e Trdexr MM A Unt O™ W WMelWRogd Wik PARLY .

— Now, Qreake o vesyTods 8 Qur ama Negerd Ahe Nela
SF Qole Pasrh Wiy Thesn and Umk Post Giie NROLL,
becaure TMew feday N 'QT\%Q‘G%““ ar emd e dne \Tnd

T ONOW, T e peimier PTR Yo dne \any Modsy S e g

— Nad; vewtrde QL) Qadweri Y Are \eny Held B AN
then we owe Creatig Ume betsem Qur o et

Lot nedo

B\SQ‘QB\ \\’\m \WQ‘"\’ _ NA &\ \‘QJ’I‘.(\)

it

ode %PTR = BRYT §
Node % Couy = ey ™A 3 U Uradke A em\m
Nods!™,
Sey Sy = MK Y NuLL §
Repesk while PTR < kEny)= aulL

SEYOPTR = Pre o Uiy,
end \oep

Sl PTR = UWimk = Cuy §

3

BroomRle 1~ Yopert Teonode & K ooy ema - U
S g S N, v
BARST

- TAke a ooinvey PTR \?G\W\\:\“% Ao Ane W*\“Q vede o Lpt

G F—>ET T il
\:\Qg‘\‘a PTQ R
T ™oV prR An Ok end W e R

L R S oy g S 1 (T
FARST PTR
— COreske YewnNode amd Qdd e Neld f G TRAs

=l

C WY

— NOW GAd CuIRYentE Yo A end &% <re \Xah HQ

Q\\M\ﬁw\m e U e\l & PTR b\ Qs

M —ET Tk % EIES

HIRYT
— NoW e \Wne afterx Q\CXA&W dhe Mewnede) 1R

M s G —sE s G e

Ty

s ix\)\@r\\wq B A node oF PQW‘\’:\Q}L\OJY Po)&*v\csf\‘%

T Qreake O wpaneds of Qo omd rpesth Sremn o dodre Post

COreale o poyrveX PTR omd W ig PO Yo mm%*\\ DRAW-

INERY M\F\-&\% TEOesy TR Lrom ore mode 9 OmnEihpee Badss
BER e pog (Periiun)

TN tneest dre Wy & Qo wihy PYR Uy, omd

meﬁ‘ Ane TR & Umy Bend o oddweay B QGase

‘9\&@5\(\%\“0 \nresct_pos @Q&) Treme)
5
fede $ PTR = Srent)
Cods F QI T e Mode
=13
Repook whle e pos=)
BTR ~ PTR = WOX ;5
[
end \oop
Q 4
Ser Our =>dako = Wewh;
X’\&\»S\ Loy Qe —> e > PTR = ACN N

) PTR S \ink <« cues

El\im‘)\e"“” TRe s X s % B - T pinen

SR BT
\RST

—

TOke Q peinies BTR, POy 4o %\—m’ﬁﬂ Teda o QA \Wxt

W S v S . gy SR v e

CvoQt BT

— Wove dre Polnies PTR dp PRIt = ton-y = 9 &

R e N el EN N S R P

HRsT PR
Motake WQ‘K\Q Ler ey teda ard \hert Ahe Q\‘Q\A; S~
doka Wil Tremn any Wy Seld Wiy PR =5 ey

— B Ahe mews el WS tee NR- DSt PIR P

LBl 1 - liw
I UANY PTR \gj/-j\

C Y ~
< PNy s
Cronfe Yhe cddvenn Mel o PR, Vb nesdh O

Teda - At *\%Qm%in e Bne Mre, So PTRSUm = Qs

LU - @jﬁ@ﬁw

FlRsy i
¥ Delehion O Tegioming ab-tne \Sxv 4 -

% Qmﬁ\Q:&"‘\‘\”‘\c’B T e

= TURRY, we teed R Check tdether Wne \IRY
Q¥) Tov 1F toder e Prerented <nem Q\\\\Q we an dfede
Yoo poder Svere Uk Qiners \ﬁ\&e oy poraSe -
T We G%e *Q\{\NQ a Ponkes BTR, pc"‘\m\m& e %‘r&'ﬁ\%‘% Trds
ot Nne ok -
=~ NOW, We Qe Sromely dbe FARST PEaNED 1o e Ment Teday |

Decavpe Al by dk\dﬁ*ﬁ S Tede L Ve Upd ®econd
Nde 1 dne Uay 39\’1% Tedy N e

—

NOW, (se Qe delele v v Tede drom Sthe \Ruk,

O\eritee Aclete beq Y

3

I RRST — — oLl
M N e W Qmw“l
S\

PR = pRst
B\RaT = FIRsY = \ank
(\ dAe\ete P\\Q')

Frcunp\e 2 De\e*‘\\"% e S*G&”**E ode Trom he \iae

O ——la) 21 B

TR ST
— TAXe aore porr PTR, whiahn) PE\\NQ\“%%*\N& &\e&i\%wﬁ—mﬁm

& e \Wn\%

ne Cosspae Qg

FR T, PTR

< N \ X N {\:\

Noedey D e W

U 1 7] Bt)iyl

3 IR T\ RSY
NOW, AQ\-&SF‘L e YR (% N Nae

—E0 =\t
sy
* Di(i\f_“l & a tode ay End -\he.?_\ii‘\‘ -

Gt e Dead Bo-

. . e e
ra— F\ w R J we eed “ e Ty e xﬂ‘(\ oy ‘A\Y\Q \7\‘)5\? QQ‘(\\‘Qv\ ‘Q

Ytk ey, T e tendndeleg e levramy Then e fom
delehe Hoe teden Oemudre TRE PR

W Qe *QY\\NQ poveRes TR ‘Ps\h\v% Yo Mhaakug rds) v A
PO Mve BTR A Are Wk Indee Ly sreamesrile PREFTR 13
PRSI T e Brevinur fedu ¥ dve oy ods (FTR).

AT e o el & PREFTR neds & nOLL, ecasde
Ofesy Q\L\o}\mQ \ask Tram Gok PREPTR edw i ¥re B roda .
Deleve ap PTR vody Troen Mre \lgh

%\Qc'f\‘\hm Aelefe . €nd Y

% TE BIRst == NoLL
PR Ly e seeiy
Q’D:\%r“,
PTR = s\Rav
Refeal widle P ->hdig L =novc

PREPTR = IR |
PTR = OTR > Liney

PRETIR ~—= Link Y Qo
A Vb —

Raaenple - DVl dne \oar mods Sy e v S

L= -G v

F\RSY

- TAXe a plnter TTR . wonita g x>§\'ﬁ’€\NQ Ny e Srcws&\ﬂm TRday
T ‘\‘\\; AR
R EN W E W S
— Move CARS TR e TR

e Peinte PTR |, fv e =¥ e Unt 'n—r\eoiﬁm“i‘k
PRE e voSldn ?G\'ﬁ\:\"x Aree Previowy ¥ PTR TRAD

R e N e e N
TSy PREPYR pTe .
A
e C’\(\m‘ﬁl e Vo Qe & PReeIR = L, RO e¥eely
‘e v \oehuwiee ¢ AndeNve

PROPTR modd Qmd PTR oo T
The \onr redn (BTe)r Svam dee AT

(T s (W

sy PREPIRL vl
LT 1=l > e
Fle sy PRePTL

" &.\&‘\:\‘\% pgyg‘_\\ Gdax vedal ‘%YQ{W\ e \?\7\% s

T Ry, Sheok edtvne dee v QQ‘.‘\\Q‘Q\@% Ace TeAsh OF '
TF Crsdd. Wrom Gle om datede Moo Todan Qlnesrudihe "\“\’D’“"‘\ﬂi_

= E“K*Q\\Q STake QPSR PTR , P&\ﬁ*\'ﬂ\‘a A e &%’ﬁ‘\:\% adey ¥ Sy

N\Q\Q WL PTR WO Yo TOS Volne, wromaksle Sake PRQP‘TQ,'@R\M
W V"ﬁ"“g\“% 3 ANNCS S o e
MO Qopy dhe Umk Slend & pres Iove Uen s Aeld S FREFTR.

—

e Q\Ym’v\{m R BmK betossen PREPTE vedss Ama FLEL Sk
Node) -
TONOW, W Carn Adeke e PTR fod Grorn Mee Wgh—

R\&b’f\‘\"r\m Qale¥=_Pot (Poy)
S T SIWRST == oL
| =TSN N Qm\v%q SR 3 Bk
PTR = ®\RaTy
‘\}‘;—\ \,@\gj_ w\\;\l s{ - o
= peeete. =) ‘

Pre = PTR = Wh\;
PREFIR. =\ 2 PTR =>amR)

A, delele pTR:

E‘k&:\“&\?\&ﬁ - Delefe a vo ar FQ@S*—\QN R 2 Lrem Weel e

M) sl B —{uhwyd
Fless
ke Q punkev pre ?&\WHW@% Lo S}r‘w*\f‘Q T

L) — T2) FET > ()

Fl(&&'\“; F\(’L
TN BTR 4 dhe 3N bodfien Teamekie PREFTL W

~

T B A B g Ny e
Eiesy PRE®TR. PTL
o CoPyy fhe Ume Sicld & mre inve ek Sl & BREFTE,,
™ &0

-—

PREPTR. Tn POwITy dhe Temknode of PTR them
delete e BTR wodn Lrom e \x:

I P ey G (N oy oy MY PO

FRST preetel_ @) OTR

‘IH\T“E =X o

LA\ PREPT.

e sx

Qiyaulay & .
NKed ULk 2 -
NNNNANY VAV R VN

~ - - *{
— & Unked Wabv Wneste See a1 Tedsn S P‘S\ﬁ\-\'ﬁQ L) %@ 'F“

wedel St %e Usk 1% oled Sl det Umked Xy

-—

These % ™o ‘o‘lﬁx'&\r\\'*@\ Ama emhﬁ & \O):

-—

TThe opevadisng B Wraany Geked Bk
- ARSSERE & Q Tedn
2 Delellen S A Tedd

B AL A nody ~

— W2 Qam jngent e Tedss e Cirvcdan \bnved s N Q W

B Troexfion & & vodle A\ ‘DQ%WN"%
Qe TopenHen =% o voday Qi QH\QQ;«\K.

Q) B \-)Qﬁ\s\'s\\'rﬁ“w | @

— (Cyweake O "Tewtodw o C Y od yogrexy e Qq,\d.ygw

e <> doka = Shesmn
Aok Pt wemd \iml pasey Cxaperea == o
Ciase =5 WX, & Lo 353
Lot -
T TTA%e A Peintew BTR , N\ Pém‘\:\“'%‘\"b Ao Basiing Tedu o W
TOTN e 4o dhe \oay meds And Q! See. B Metd
o S nedw Pl =S\Em T s Qo
Move dpe

BIREY & dee fedst e caunre O S SENNT
Tedes Vg e Uk .

N@M\ Torm frnent _teeq L e
N

A % PTR = F\ QST
AU 3 Cuy — mew Nede §
CWwy > dava. ~ (e

LY > o 2 RIRSY

. FRSY
Repear (R PTR SHeX L=

FTIR= PTR -S> Unyy
PR Gy = Quer
\ PRt = cuss

J

Faaraple +

&) NessNedel & Cauey @%
TR

PR o] sfal)—(e]

9 e @ Bl Y

5) F\RSY PR

S IS DR EE)
| C»'Y"\

Q) \:\%{.{\: j’—;\m | 2 -—e@

© O Eﬂ&ﬂ v

— C¥eake Qe aedy Amd e tE tre SR\
iy Cux = Aakal = e
Cus =S LBnk = ¢ - B\RST

Ak 2 i “ . . 5
& Povmbery PTe, Pmth‘Q o ¥e. &&w‘“ﬁ edey 1N asnk-

Ve Hoe POIRS BTR dn dre \ohb ey im dre ST

)
mw&& the Addwern tE lopk weda N e Qur Nedsl ;e

-—

AR CRAR Y ek —end (‘i’vum)

\ e, % Cuw = mews Node |
\\ G =S Aaka s (e
‘\\\QMT = N Y flRay o
X_QQ‘Q % PTR ~ F IRt
Repeotr- wille prestlsg L=won
PTR > &R =>Um\Y 5
i} PTR =S \ny + cux 2

Kaamaele -

—

ATIET

oy’
Q) AN

A0 By
) YE\Q&T) PT_:&—> “ |

) DALY, e
ol Ly,
B 'S P e
y:ii}ﬁ M K\\Ss\‘iﬂ
%)

PReat DY

\}::\\ \ {jﬁﬂ

2) Deletion sl o nodeyi— ®
— e Com deoele A YO Lrory GrrosSasd \nked st

O
QY toletnn 8- a0 vedsl QA \:egg’m&\f\"ﬁ
) 1) Delelien & o wods) Q- @6\&&%
AR bQ%\WS\‘mQ%, :
'—"1‘—“*‘\&\\»& Shetl, weten the \S9X- Q%ﬂ\d\““‘&
\§ e Rone , WR Com deleke Oerrudne ey Fvalda
7T QA puinken p*vo\ﬁ\sc“mk\mm Ad Wne &\eﬂ%ﬂ SNEWER OIS
T Meve dhe pamet PR Ao tne \anr vrds Yo ne W

B Q\\QB%Q Are \Ink 8 \opy wedn de 9™ ped & Ve (Bt stk

-—

Are SermasthR S Ok,

Deleke. e ’%\Qgﬂ&m@ oday and Q\.\Qﬁ%’; Trex Yo &ﬁm& s Uk e
%\Qm\\‘mﬂn Aelete _ \3@&& N

I8 SRy == N\aLL
Pt ' L W @m*\“ y
Rl
S Yedd ¥ PTR = F\RSY §

Repeal- while ye ->\mk L FIRSS

TR = BTR —S\EnK
PR 5 \me + RlRss 7 Sk
0 RAeleke RARST
TB FREY = VT pye ,3,'\‘\“‘(\;

EIQ:m?\,o_ - TRy
A\ éLL, >\ 8 -ﬁ@@

F\REY, YR

RS DI ey i S T T
) EIRST TR

O AR ST p—y

g sty
7 ey

& TIREY v
v e e)

— ToKe Powhen BIQ, ety PU‘\OV\%Q o dhe %%m«&‘w% nodw
DONL dpe Prehery PR o dre \oshreded |, wneomanile wrese
PREPTR |, % eoieks 4o Drevicws & BT wedal

e e s :
SO e RAERN N PRemte. Lme 4 Stestivg Tede

NOW, Aelede el BTR meaa Lo dhe \ine

%ﬁw{w T Aelele_end Oy

W St == oL

LIRS Wire S, va\;&“ e
Eoa !
Yoo, N3 PTR = FIRsT 4 ¥ PREFTO = plr
/

Regear e AL ESCOUSIIES SIS

PREPIR =FTR

Pra = e S smvey
PREPTR =\t S FARSY
delefe TR

Waamople 1. §
IR ES i amne)
PRETTR,
2 RIRSY, Py
a1 YT A—Igy
) T\ RSY PRESTR. TR
pha L {2l U syl hy
) B\RSY PREFTR
PG G W
5) ERyv

PRETR

L E BT,

Doue \teved Urk 2- S
NN AN AN

— & Acul Umked UWny Yy QesPlen -\h@pe B Unikgd Lk) e it Pw\&k?f‘_\:&\&

el Pooter lefl - Rige:- \)G\MNQ o ne. Tucce xrts Cneay) wod amd

Lelh Poimbhesy PG\m‘cW\a Ao Predeceartt (Praduuy) Tods 11 e \o

et | Dada | RN
Nedo
N Shveckare e g SonNody 1o deeid imves \S3E A%

\Q9s Noa

oy dalay
Noda ¥ \efh, ¥ Wyhv g

\
S 2 N T e Y

S
T I e have aleqe Nede o

-—

e BeY dnem ot Ledt 5 TRy W N

PO Are fiot weds Qs \efb SN S \agh reds

V) e o) DeleRon

V) T = on '~ < \
T W Cam Trvesh weareds b dhe B Am D wosp

QY B ‘v:ag‘\w\s\“x WY O Qme\iw% QY O Q‘\\mﬂ &‘0"5*’\\013
\(\)) \‘ﬁ‘&r\f\t\‘\m& .

%\&\'ﬁ'\hm Tnpes *._“ﬂk f*m)
3

TRde ¥ Y = tew todw

Ty S \efh v RO

Cuy > &l = iﬁrm)

LAY > TG = FRaT |
RRst S\efy = ey

FIRsET = canes

2

FramPet— \eoest mewnodo (o) \%@W\\"ﬁ & We \p -

SN W B AT
F\RSTYT

CFeahe dne Pe TRALY dad ATREES Vo Grald voduen \&\W‘
| Qs

TR e TRt befene e &\Q@S‘\-\‘&‘% Node) 700 e

SRS = AR iR RS

FRay

Q\\QS\‘&Q Ae

\efd Pend o FARSY i QWL e Qs o
Node

o &méﬁs\m Yedy W SRy ‘"’Q QG\mw\wQ FlR ST

P IA W) Ta) TATTE (e

PR T
W OF e W dne Wb

. e
P\\Km AN Angex- _end (rese)

A

Node ¥ Uy > e 1\0&_;
otRde R TR S RRST,
Repeak @hile STR-SHaREL™ WOW

PTR = TR - Ui

SR

Cuwy = \eft: = YR
Cuy = dada = resen
Car = TR NonY

} SRS = Sahy = QWE

E}k& U X . %

S A e
RSy
oKL A PO

—~—

e, P@\ﬂ\"\ﬁ% K 3%\@:0\%?& nede Ve o

ST b S P e I E S

sy, PR
o A .
B R T S VR W P X VIR P

LYROM TR Nedst ama Tepese e Sle\da

O e AW PErSTRER | -

Raawnele 1 -

-~

-—

-—

A B ATE el 1o]

=esT

=eay

Ps\&ws\khm Tnresh_Pos (poy, Wrem)

R

e ¥Cuww = New Deda |
Node % TR = FI\RSY

‘{:\ Y .

Repear tangle V& PRS-\

PTR = PIR->TANY

T3
Cuy - data > Wemn',
~ c a
Cw = AT T PTR - Tt §

PTR - "kt S\t < e 8
PTR-S Moy = Qu),

Y

~ 2\ Yalh
w\xm% SN mmm SO @c%n‘hm

Kl\ QXY

TROTE e cAdenn o e ey tedst letd Tald ama Py
™oAY ey Neld

R poew Canvramys medyy

© . '\i
TAKe QA pPovokesg A pg\-{\%ﬂ Ao e ﬁ\&w\\\f& Dadss V8 e S\

V\&S’T‘ PR

SRy PTQ ' 05

N

) Delefion o o \odui- o
— We omn delele o Nedel Qoo danBy Uinved Wik tn 21

Ty A% be@wm\n Q) B &r\cbd% AW) B Perston
1) B bq‘@"\‘\\\fa

9’%@(Ve delete b&QQ)

L ST SN

Prever YRRy i &‘"“WQ“
Rl

Nde % eve - PlRSTS
BIRsT = ®\Rey -\>~s\3\\¥;
RSt >\l = NO\N ¢
3 ds\ele P‘*p\;
> \ - “\\'\Q ARCLN
Mlele ol vl of \3&%-\“\5\\’5‘%

@\ \) Q ,___K \ ’5& S

BARST . At o e
TTORe o pithet BTR, POVORITg o She Srantirg T

(R T
RIRY, BTR .
~ Brve F\Q&T' POved Ar the Teadeede Qmd Qm“‘%k \eby i

\ \\\ T \\3) W
HRsy
pa Q\a\@ve és‘m Poirey SYR \s\a :— 13

\ PRy
QY O ET\{\TQ e

Foample © -

-—

ﬁﬁwﬁ\\v\m Addele _and ()

1 %% mewy == nate
Pov N alay s Q—W‘*Q“ 3
R,
e £57R = mesy)
RePear- timle PTRS ORI L= Nuu_
IR = pre >Van-,
Pre-s \eft - gkt = sole %

Eoownple s - Delefin ot ontodyy of ¢

Sl il s W= RIS

TARSY ;
— TTake a P = N
Pty PTR \\W‘\S\m\“% \30\“*"% Yo e &GS(\RNQ

IR v g W e B e P

FIRST, TR
Ve dhe Poyriey TR W e\ Yedy)

-22-*@2@

C\RSY
-)
\‘\Q\“\%Q. e -fm\gﬁc Wae. B BTR Prenitea \mdsx- e

Aslete dne HPrR

SR ﬁm—{@@ ol T

Tlesy - TR
U= Gl Lo el
F\Rsv

W\ .
Q \\) 'R\- 3 We sty P&iﬁtﬁ\ e
W&Bf\ Meen Aelete _tas(Poy)

3 & FIRST —= NN
POV M A @y
s U

™e %PTR = BIRETY
=\ 3
Rgpqo& R\
\E‘TR =~ PTR > YNt
LR 2 !
PTR = left = g =~ PTR - TN
PTR = MR- > \eft = prp oy \ekt _9
ck A<defe PTR ’

V¢ By

R t\e 1 - *
alioesh Deledmgy %TQ\ Noda *Q'mm T de\&b\&,\;\-‘\KQ‘A— (NN S

= Mo R RO M R T

LIRS
— S{Qke = R &
® A Pomhery PTR \Midall RN o Voxd
\K?G\“\“\a ﬁ‘\ﬂ ey

F\WRYY, PR .

— Weve e Peioves Pre do dhe T Nedw in e \ixe

B P
FRSY

oo QQN e PYR veaw &N J‘?\Q\:&x So the Peeshion

oA Aard ek renode

SN
Flesy

ERR =R e
R
T NOW delefe the BTR radd Srom e Wxy-

Hesy

Strack %\“ﬁ \/.:\‘\\(Qé\/ih\‘ —
BN AR ONNANNNNS

— d—ack W A Yieeox Aate Ak ruaiule
A
\ \‘NRQFS\VLA %4 Aec\atec Yed Q{Qg@(\ pre\aalE end <ol

@ % D (op
- A—“*\Q\\Q TR = NOULL HFem e Shas \j

e ense e\e TrIOYR Con

o -

oy ada \vn¥%
- Lanvol x\m% <\ Rt
— Stk Ay
Claxx e
3 eovake ¢ Y_jﬂ
Ueck ¥ 5 \

Put\ie % S

oma) A QWMQ\ 3 S

VA Puy (ree)’
: VA PeP)]

X3
POl g~ 1’(‘\%&\1\%\‘% Qan e\emnenNy- ok e e,

—

Npetitnm Posw ({xemn)

., A .m
SACK F oy =N Do) | eventre ?31\@_: P\“A

GVl
1@ TP == NoLL ‘
Cux —>daka = Y,

Cay >Ny = Ny
Ao = C;\\rg; - Uy = SN

N \ ? = QN
Ly = dafal = e ¥ WY

) e T@:/N“"L?l Pt TBP . ,\/

Cay-> Aok, \ra\’rqm)

| L * vf? SANE

ET\ -
0 T2 @ [\
Srony 20y JT“:;::/ spersl &
D \ \ . G’X\
Lvonn -

D&CVU\QNQ °— Dleion & Wodan -—Q—«'Q,m e Qe -

PRt Degugue Y

3 B Fromr == oLt
* - \\
Pxyoyx WY Quesse R U‘”“V‘Q J
| =R

Qo FHPTR = Frony
Trenr = Lrgow SUmKR Y
Ac\eta TR

Aee
Rx o~
= CHNWSS
e L A
AN X L Sy Rl

QF'% «C—rm\
oA m\q}\]\ ~

NNV ~ NN
o QQQQ‘Y ONT — Y%

Civaon Uil sepseperoichisn A ‘)Q\.\Qm“ﬁ\\m.)

— covenle Bahd oeeasngy Aoy neda (ALY Sl

Tre Fioar Nedes W) = = N &'?KJ\‘\
RSy

ol =
oOpratieny, R \Dc;\yQ\\mm‘m& QY LR AN VRNWY “Q\}'\Q:\Tﬂ ZL NG ?ﬂ“mrf\io&

— Rend FQ\‘QM‘S\’\\Q\ W gePsrpented axn reader Nadw, AT
Poodan Podsy

P&Q‘t\mm\& equanS® 5 Zewo o NENZ,0 0 Gﬁ‘é‘\"‘%

= S =) & | Resre ?&)&Nﬁ\\\é\
— T"\g\ ‘ o ’P\ﬂ\—
Coef amd ey N\ Q\\p@\% & FewQ Pﬂ)@\wﬂ\\o\ K\—\QQ\ASLF{) \Xs \

W Aress P&)ﬁ‘\%m\m\ QrP owe Qluiws oot) ety ol ALY
R Ao QQ\‘Q\\QW\;&& A veanlte sy p&»@mmg& ;
POy = =M gy

FRSY

POP - DQ\Q‘RY% o nede From Ane Staag E

Bgpiten Pop O)

D TR §
LS Y @ SEE—E i N\ L
\ «TSZP@ ‘

PO M Sheck I Undersg !

&r L]
\ 1\ \«—vo?P A=a XS o

Tragek, *PTR = OP §

o L\ TTRR = TP - Gk}
@ (& Aelelre PTR Y
WO

Nuene Uniked ik -
ANN\NAN)
f\\, NSNS e LRSS e\ orek 2
— Queue (3 A ivneay dateiRyuckass

erd colnd REAR ard Qeleted T

wmresied Lroon Qre

Ottty end colled BRONY. De\a;af\———s \)
N Reoy

.\\ >~ S . < “‘k
4Ry Vollues ot FRaNT = REAR = N\, e
W ey

—

®\)\ SANN=] RQT \\3‘\

c\ory Quesse
% Sravake ¢
Queise ¥-Cvonh ;5':T Neax
Pubrse ¢
oo ‘\X@‘f\@‘“& Y%
Unid ew]aeue C‘*"\‘“‘)B
%3 vad degrene (D3
Tk Yne Qsere

. e
Rrquene T~ Tepesiry - OM \prreesy

%\3@1\—\\'\m g:mq(\m\\& Q‘.\\‘Qﬂ‘ﬂ)

3 Queve ¥FAwy = New) Quese 5 | Qreate em\)?\'Q ™odw

e 5
Cory => Aot =\ T,
Curr = NN T UL

' Frony == NV

Svony = F=OY = S

=\he \
T@_@Q‘(- \\\'5\‘{\ = Y,

% weox = %5

SPaYAe RAOKTIRNG — ®
NN

N2 Y% %% Relex ONT -y ‘ :
A 00 O
= ® L‘T Q O %
* &PQ“Y“&& YoX vix Pu-e- — 06 o o
— For weprepentiy Ave APTRS ARSULIAA & ooy
< _ &S Q Q
epropeniofien | Spray wRed Ame hrodsit FOSD
— T heods® medalg s (ontoltn e TR, TR B Ctump md

NS R TON-Fewn Yt VR e PR

- The Sbseguent \meuy Corsdara APl Secen &\, A3y)
§ < woud nomos | & @Ruron nomnerny
AJ < TOMN-ZEe Senmesnt-
MUY Ahe avder B ippal ofin e fakesn @GN YOS

M@(QAN
o EAT\y NEN-3RC
Neodsn nede, =3 W pgn-opa0 A e 2

CSIMQ) = Q) = (30, 0)77 & 2)—> RS SIC TR ARV

N

e (o as®
o N’(\

* Pelete Spamrre tavwin: -
- -ﬁ\\ \-\\\Q e N ‘\"53 Ve 2P &&Wf\\% QyFe AQ,\GL&QA QX Q% -

V\\‘\'\O&\Q e \mw odas WA PK\’(*\‘% N P)

>

e Soch Hrevoliomn e Qe C)Aéé\"‘*q e, T ok QI ErS-
N e O e e oy - ’\:\f\o&k\Q Noodex Yadsy Copro®d 20 SHATEL
Auailae pace &k 3 -
INVA NV VaNVaVe

AVA NV VA NA VS
e Dertratiar uh tped 4 Adde oM medsp ond oad Wrmp.
TOWERSTY CsMh e g Creapor) (AR
We Qany Ueate QoA \’S‘Q \L&‘wx Mesd)(\e\&%ﬂ A\ "md&mth
Aelete .
— B Yhe defeled adsh ONe pcs\nv\w-% T AL (AreiloXe o)

Trese Qge Mrvree Sumaione Gernede O, wekmode Y, NLRYG).
Three skeph Lox Qc\&“u@& Toads ARG AERL

V) oreak Vne Wnk Bl Querreny tadel @ Y8 Aeds

Q) AAd Woe Cusrvemy Toada Yo AVALL

QAVY vePors Camrety Teds \6\ e o

() et nede L) — Toke e oredsy Tremn Queilo®e AP \iny-

and A T mewy Sp

S errede Y

Jg"ﬂx
N T Y S X
oA ¥\ ®’__”
16 Caveny) aweL, __\7@_;3_ AT
} N AWVALL Y

\ AVALL = AVA\L > km\q;

Fekurn Y

i o
W Wevnede () — T fermeNe dhe Nedak Sreesre Ve R o Oddal

\2%\
wevrnedal (today %N ,m @
(!
A= \nx, = AVAL 5
jf\ =)
DA =R A—\fi\‘m
§y AN=0}
=) OLARE () — ¢ vempeve ol A redes Qy @ tepas
AR Y
(N
g Loy . %ﬁ;q:m%’/aj
R \QRY = \as\ L—f——(& e
AVIAL Y ¢
foat SRR s T4
AL = o
\&}s¥ =%
3
Euavalane opreft-
AN AN O) . t\(_
- Q\VQ\C\\‘\\QT\ = oveXY A el g , AR aoad Yo bR EGAN

L0 -
- e D A A AVR. <
relafion S80S T seflexive, RS -

QAR
Vel Qm\:& %\)Q(QM\% q\,ﬂk"’r

Q) A= =N settrave)

WY *\z_«& W% (= W x«Qmmu‘vﬂg)

By =y, Wew, B (5 Apaenntive) .
AN O:_k\, 23\, =\, 829 (24, ¢2%,325 8%, 120

— W2 AQxe QQ\\:\“% Thpee eguuavelems- CAGRASA

§@\k JO0sY 38K)

- Radh Ruavedunts Qs Aefiver @ &’”\%T\cp\ NS, @

- 1% Lred Fu CuyyedeRh T Ve TRAXRA:

fe LT 111‘ LW
\\1\‘& Da ﬁ %%%

—Thexe ANe daw Froger Am Ve &\Qo'ﬁ*‘(\m)

,,

QY Xre QPaN@epm e PARXR (4)) Qve wead D avd Swwed
W) Regin A Q Had Ay Hosxi & Sovwmn (0,3) , V& Q&Y

Qne. Xasme Aagk ; Tied —\nm&w\“ (1,\«), W R R Uog

—

el dpe AN Tpuy PQeA Of(e) omd Q‘r%e&\vh Qe Ty

e Polv TRITMY, S o Gt poiriN{E) = TR
Yodaare Roeere Qo

Trastlaln Al Palvr . o , W Qe *\Q‘c*\w\R Qne. Alrremuianay Q\"‘Q’Q
R B\ 2 N, P e \73Q e

U Rgpuavadanes Y

ORidaliog SRy S
Wil e Pt A

N

Srotanrn M Py (51))
Yo ke TRy - TR P

e GSN Qs\o\‘y-*\wﬁ
VPR Hhe @gRINEN®
u} Trar Coptairng I tre O !

< Soan

G\@swewc:&obqq\ (BN o
SNNANANANNNY N\ \N

63 QQ_P“(Q.)\Q'K\‘\Q‘\:\Q’(\ * =

Defindens A Qunessaling & GRY Qe Aegueme. - ereramy,
D2, A, - Ay, Wheme Qg i <hwen v | -

The <2\emnandex Qs QE1C N~ har Gre. Tl SRamy, Aresn RN N

o _\l_ A\: (QQ |q|]QL|“--— Q\“"\‘\ (\S\<—\QJ *h‘
A\
AN %
Nooe R \Qn - Qferrnn
QchS\ ‘alr) (LeraessCone)

~—

T Qg 5 haod ey (@ Qg =7 Qpoy) SR sl .

= et Plpraomiatl PLyR)) 35 Cam meprenunt TRy STy Tover \orety,
UWke Qoeg, Q.‘-\()'“o\,e_m\)&, RP

- NQAe “CQ{)YQ\.U‘&\-\@KW C ek O &(Q,\:\,;\ \Ske "\"QPQ R-naday,

Coxte. R Neds) oy Cael , e—’\‘)ﬁ‘!\\ﬁ\\-“o& o \5\1\\ Q\Q\é,

BRI
Y \ \ <y \ \in ‘X)%
AV \
VA = SN R
PEY _sdewt

™ -5 Cocf
= “QQQ U dv&{—imgq\ QLY
20T TPl 3 vaw O o
\ORN K% pb\QN’d‘m
A Q&Qmm R\
Ny enp Y
Ve § ros vaxiewe
DG“\QNC\L\ AWy
R ceRs
X‘l) TP THO S,
T Unee Tgpar - modss

O T = oy = Thaoasy feds PO T8 tne WA

W\ = Pamns. S VAss\ D\
<A — 2emn

= Aowm DERNR W ofw 0% thase Nadeg
AL = Q&qumg‘;% Var o\
~> Qaet
QNP

W) YW T Py

Q\\\) TK\\Q e NN

B By ®

S \t:i - \\éj\w
el 2

&‘f\‘ _ Q AU e\ C_QQ,‘{—
LA S DY LR Q&%q\\n - am&>“3* %7\%@,3

%\ﬁ\“ %@M\ \al

(e > EEW
ol 1 (El Paed

@\WX\')UQA \3\7\(\‘? ~

a=Cy - mv‘w\im, \m\%\\\:g

B2 (2, 00)) = lmpgana, Q in Otom , aewna 1 WD)
= &%)B)Q) — \M\K\},\ = —TWQ \;\NV)\ QO QJ‘S{\Q}\‘Q\}\(M‘
DR &Q. V}} — \m%\h =9 She\n Sxem ,‘sz.\“fFR\fQ RS-

\x\- ‘vm:Q e fhared {0 amotbenr Wnk Gy OURSISGAN O ¥R AL
R

o .
T oS vedel Contalny 2 Se\dR V‘V:%e\m\m\%im

Troe — By Loven
Falke — Aram 1hkad

B= LY QLT = oL — o\mek\\\:;;\\—

R = (b)) &t \E—%E}E{]
EE_ >R
=@ 0) o T R - Tl

D= (am) As Lixay —> W

TesnPlale clapt Chain T~
A YA VA AN Vo Ve VR A% %

<y Terplasrneny Cradmy, LT TTeseR ol e
T Genemsily ool O wied for Qoda TRISINUNY -
— ArAmLEL <> sk 1 Cxlond of Tede LT SRk S0
NASA) TRAe. <> Comleel AResaed Y8 Travnuat <3
Butrel Choin e <Cloadd
T AN empty chelny & Tnteger Uar Qom el Qroded Oy

ot <Ay k-

Y Charn) Theoale(r’.~

— Thematey W Ore) Apne cﬁ@u&r o QCCegp elam@ovr N $ne Sy
S N)

TR~

p—

NSA el D)

3 e Q2] = Yo, 2%

© \ X
T o 1200 $1=2 3 144) Ty R s
’ Xk Aresrratayae.
\ Cou: &< QY <

= 3o Sravng

e ("ade FPR S PTR L >l S PTRAPYR S i)
S << pTR 5 data

PR e

Koo -

Terrmnanase.

A 3 e X O\
- o TRenday Qaxn \3 Pested loxh B Chairn WYy Pud
OCCean APeciax .

Uhair e sadey

bﬁ\x\)

e TRy (£o0) ng
A T Y

SS Tvekureg

R T WX N

UradaTienater (aany) 5y
Sewn R U N

ANTREN
S = Accuraulake Q\bﬁi\ﬂk\ , &P >
W Craln QUpesritiary g =

——

T Charne cam perrSarn neve Qe Wree Opesradioin
Qy VOReEY adey ad e B e R

W Con Cofdemate Ty Wk
W) Reven <y Q_ Unde
Oy Vopeny TNy A epa W e Sy

. xR PR ST
Q\‘Ck_\; \5\ \—m-ﬁ%—/ {3& S @Q\ﬁ

PNEXN §

- W e

%\%ﬁf\'&h o ey e (o) @
}orea PYR = FIRSY 7,

= W Nadey ¢
TRAAY ¥ QWY = R) espesive. wota) ¥

e
oY 3 dokg, = W 9 TS Q\\&\d}
ey = \\mK = NOLL

Repeat e (U PTR-> Wik L= NuLL)
T~ e g
\ PTR - Wk = Quc *,
D Can Colenare Tuw \UFR 53—

R\@cﬁ W Cencaderake (Q, W)

\ ¢ oSy d=mo)

% Q- a3y S\nyg = b Qi'm\—;
QA \eor = e \aney
Ane
A Q- Roxy = oo, QK iear > B\l \@wu_
" Q)
Q- \ogs = Beloar g —Xijl%m-'
% ‘ou(—{m\— Yo\
", B RERy = b \agt = woLL

Q- R A\
[W S W
o onv \aav-

QY Revex SR WENAC SR
T ORURE Oreake Trgle Urtkad Ut (Sroan) haxiog medep -
— Eﬁv\{c\\\.\ AR Tun Poinfesa BTRY Sttt 8 PYRE
Q\Q‘?Q‘:’** e %\m\mﬁ DI PR e \BR-ReAs
TR KR YO fodon, Qremy e WA ama PR \bwm‘\ﬁ“Q%
the Recond vodays

\§! Trarge e Fivas e sy Std Wi IR\ Vol
WY ?G\T*\ﬁ W Ok todst Ox PTRY\

0\\\13 t\\gm{&m Ve TFRST ?G\W*\S\ﬁ A BTRL becowp e
TR X Yhe &mﬁ\‘% rodsy Al ﬁs&\sﬁ‘&’(i\\i\‘qa
— Bk waviey do e \egh eda Qredge e Uk MRe . w-
e nedsy alkan TQ\:@:(\\«Q th TR\ .
— V\\’\Q\\k»k e QXS Syeyely K\V‘Q e %\\rqm S g%k\iﬁm W) »

Naerdnm weesire Y

1

PTRU =m0, PTRe Y
Repeat winle Sirars 0t L=no
PIRL = ey ~ iKY
ey S g = BTR)
PYRL = £y
LRy = PTIR2 Y

E SR = B PR .

RaarenQ\at -
B EE S e T el E W S T
T\RST
Q-
> TS L)
TR PR
Pf)é‘k\i% = =

SR Q@ Sy

- %L@m
\

® eYRY- rrex®

SALA
\%\- ®«\?{ LNy

Py pxRe prezQ)

TR\ @
— Sy
7 WO e e — AN T2 rry e WY

PYRY YR

= fea) vevasae \Sre A

N U v Sy

TR

Re o vedal Dupl coder <Frord Ane Ry - (EY)

_—

%\SQ ‘C\;\ AVaN))) N2 SeraN 2. dQY Q)

)

ToAe N Quy = LQocrl y
Repeay tanile Cade \ = st

ode o gYR = ONT
Repeat Gie BTRAWD

(& (prre s\ st =7
PR WK o1 SR NS

E_\ﬁQ _ ‘
o = P12 AT AN

= Q% =2 NSNS

Ej\oém?lcl -

a0 T

F\RSY

F\RST
B8 o e
) T oToev 12NN

Eﬁv’%@%@

WY

PTR C R ONe- ==\
\“—\?ssv

) e E

Q\x ev&

LA Q“ﬂ\?cd « R==D = m\s’—f\
al 1= @ar:ﬂc—emé
NS\ 1
T

X Compace &:i g T, TIRSWNS Qe Odx0s B \o
oo \% «;&m\g\ﬁ 5.
QL\W = E__/\é \i_;\'% \\® SZ":\

?\YK e L BN w\e:ﬁ‘v s

F\RST
Bl 1= W) B F f\
Tremawn B \ \“ Aee S esEONE
R :3 F\RSY
w\\mg \—\5 5\ SA\\QS A
SR

ke AnnnpeN & W= =% T NN

2 _ﬁb @"5 \\Q \K\
=

GyreRaX¥e \Q==\Q N
Q==Q T, PFIR-SWnk Swves Neg oddyests -

——_— Mend fedst B 18 W YA oL

S FYI o SO S

« (N 4 \b\\Q

Iv i dem 2 . v
TRsT

(@ N
Tal > (el > B
PR TE-S vk, I NOLL Thee

s = > N
Oy Jp WULL BY X

Shep Siesradisn

QN s OASTVA

.% -
F\ng . '
&\\>& Sus WRE Wovineur Asnpbtckes R

YE}_—> i_‘&a\qia A

=N

SYLLABUS: UNIT-IV

TREES: Terminology, Binary Trees: The Abstract Data Type, Properties of Binary Tress, Binary
Tree Representations, Binary Tree Traversal (Inorder, Preorder, and Postorder Traversals), Thread
Binary Trees: Threads, Inorder Traversal of a Threaded Binary Tree, Inserting a Node into a
Threaded Binary Tree, Priority Queues: Heaps, Definition of a Max Heap, Insertion into a Max
Heap, Deletion from a Max Heap, Binary Search Trees: Definition, Searching a Binary Search
Tree, Insertion into a Binary Search Tree, Deletion from a Binary Search Tree, Height of Binary
Search Tree.

[TREEsS:

Definition: Tree is a non-linear data structures in which collection of elements are arranged in

hierarchical structure. In Tree every individual element is called as Node

Example:

(A)
(8) (S
ONONONOENG
O O

1. Root: A tree contains unique first node which is shown at top of the tree is called as Root Node
(or) The node which has no parent node called Root Node. Every tree must have only one root

node. Root node is the origin of tree. Here A is root node.

®

2. Edge: In a tree, the connecting link between any two nodes is called as EDGE. In a tree with ‘N’

number of nodes there will be a maximum of 'N-1' number of edges.

3. Parent In a tree, an immediate predecessor of a node called as parent node. Parent node can also
be defined as "The node which has child / children™. In following diagram A,B,C,E & G are parent

nodes.

A b /
-
Iy
o M,

OO0 ®

4. Child: In a tree, an immediate successor of a node called as child node. In a tree, any parent

node can have any number of child nodes. In a tree, all the nodes except root are child nodes.

5. Siblings: In a tree, nodes which belong to same Parent are called as SIBLINGS. The nodes with
same parent are called as Sibling nodes.

Here are Siblings
Here D E & F are Siblings
Here are Siblings
Here are Siblings

- In any tree the nodes which has
same Parent are called ‘Siblings’

- The children of a Parent are
called ‘Siblings’
6. Leaf/ External Nodes/ Terminal Nodes

In a tree, the node which does not have child is called as LEAF/External/Terminal Node. Leaf is a
node with no child. Here D,1,J,F,K & H are leaf nodes.

®
® ©
© 0 0® ® ® @
OO0 ©®

7. Internal Node/Non-Terminal Node:

In a tree, the node which has at-least one child is called as INTERNAL Node/Non-Terminal Node.

In a tree, nodes other than leaf nodes are called as Internal Nodes. Here A,B,C,E & G are internal
nodes.

8. Degree
In a tree, the total number of children of a node is DEGREE of that Node. The highest degree of a
node among all the nodes in a tree is called as 'Degree of Tree'

0 Here Degree of Bis 3
Here Degree of Ais 2

0 G Here Degree of Fis 0

- In any tree, ‘Degree’ a node is total

0 G o @ 0 number of children it has.
OO ©®

9. Level: In a tree, Level is rank of hierarchy, the whole tree is leveled. The level of root node is
Level 0 and the immediate children of root node are at Level 1 and their immediate children’s are at

Level 2 and so on.

Q Level 0
e 0 Level 1
0 e o @ 0 Level 2

o o 0 Level 3

10. Height: In a tree, the total number of edges from leaf node to a particular node in the longest
path is called as HEIGHT of that Node. Height of the root node is said to be height of the tree.
Height of all leaf nodes is '0'.

Depthis 1

11. Depth: In a tree, the total number of edges from root node to a particular node is called
as DEPTH of that Node. In a tree, the total number of edges from root node to a leaf node is said to
be Depth of the tree. Depth of the root node is '0'.

12. Path: In a tree, the sequence of Nodes and Edges from source node to destination node is called
as PATH between those two Nodes. Length of a Path is total number of nodes in that path. In

below example the path A - B - E - J has length 4.

(A)
(8) (C)
0 &) & © (H)
ONONNO

13. Sub Tree: In a tree data structure, Every child node will form a sub-tree on its parent node.

Here, ‘Path’ between A & Jis
A-B-E-J

Here, ‘Path’ between C & K is
C-G-K

Subtree
Subtree

14. Predecessor: Consider the node X, then the

node previous to node X is called predecessor node. Predecessor o

15. Successor: Consider the node X, then the node

that comes next to node X is called successor node. X e

16. Ancestors: In a tree, parent of a node or parent

of parent node, or itself is the Ancestors.

17. Descendant: In a tree, child of a node or child o SUCCEssor
of child node or itself is the Descendant.

[Binary Tree:-] o

Definition: A Binary tree is a finite set of nodes which may be
either empty or consists of single node called root node, and e e
two disjoint nodes called left child and right child.

e In Binary tree the maximum degree of any node is o G o
almost 2.

e A Binary tree may consist Zero degree nodes or One degree nodes or Two degree nodes.
Left child: The node present to the left of the parent node is called left child.
Right child: The node present to the right of the parent node is called right child.

TYPES OF BINARY TREES:

Skewed Binary Tree: It is a binary tree in which new nodes can be added only to one side of the
binary tree then it is a skewed binary tree.

Strictly binary Tree: Every non-terminal node in a binary tree consists of non-empty set of left
sub-tree and right sub-tree then it is called strictly binary Tree.

Complete binary tree: It is a binary tree in which every level consists of maximum number of

possible nodes except last level and all the nodes are inserted from left to right.
O,
&)
O Q ®

Q\
Left Skewed Right Skewed 4 5 (7)
Binary Tree Binary Tree Strictly binary tree

Complete binary tree

ADT of Binary Tree:

Abstract datatype Binary_tree
{

instances:
a finite set of nodes either empty or consisting of a root node, left Binary_tree and
right Binary_tree
operations:
Binary_tree(); /I create an empty binary tree
bool Isempty(bt); [Ireturn true iff the binary tree is empty
Binary tree maketree((Binary_tree btl,item,Binary _tree bt2) - return binary tree
whose left subtree is btl and whose right subtree is bt2 and whose
root node contains data item.
Binary_tree LeftSubtree(bt) - return the left subtree of bt.
Binary_tree RightSubtree(bt) - return the right subtree of bt.
Binary_tree RootData(bt) - return the data in the root node of bt.

¥

PROPERTIES OF BINARY TREES:
Some of the important properties of a binary tree are as follows:

1. Foragiven binary tree contains N nodes then number of Edges in binary tree is N-1

2. If h = height of a binary tree, then Minimum number of nodes = h+1 and Maximum

number of nodes=2""1-1
If n = number of nodes of a binary tree, then minimum height of the binary tree is
log(n + 1) — 1 and maximum height is n-1

In complete binary tree at depth D, the maximum number of node are 2° can contain at

most one node at level O (the root), it can contain at most 2- node at level L.

5. For given i value, where i is position of anode, then
a. The position of the parent node is 1/2
b. If left child exists, then position is 2i

c. If left child exists, then position is 2i+1

BINARY TREE REPRESENTATION:

We can represent binary trees in two ways
1. Array representation of binary trees.
2. Linked representation of binary trees.
. Array representation of binary trees:
e An array can be used to store the nodes of a binary tree in sequential order.
e Anarray of size 2! is declared where; k is the depth of the tree
e For example if the depth of the binary tree is 3,

then maximum 2¢*9-1 = 15 elements will be

present in the node and hence the array size

/®\\\
// ™~
will be 16. This is because the elements are e @
stored from position one leaving the position 0 0 ® d b
OO

vacant.

The root element is always stored in position

1, the successive memory locations are taken

by its left and right child’s.

An array of bigger size is declared so that later new nodes can be added to the existing
tree.

The following binary tree can be represented using arrays as shown.

[AlIBIC|ID|FIGIHITYJ|-J-J-TK[|-]-]
1 2 3 4 56 7 8 9 10 11 12 13 14 15

Advantages:
— Direct access to any node can be possible
— Finding of parent or left or right childs of a node is faster.
Disadvantages:
— Memory wastage if we use skewed binary trees
The array size is fixed so the maximum depth of a tree is fixed
Insertion and deletions of a node is costlier as other nodes has to adjust to proper

positions.

2. Linked representation of binary trees:
In linked representation every node consists of three fields.
e Data: It will store the information of given node.
e Left Child: It will store the left child address if it is existed, otherwise it is NULL.
e Righ Child: It will store the right child address if it is existed, otherwise it is NULL.
The structure of the node in C++

class Node

{ public: Left Child Right Child

Node *left;
int data: Address ddress

Node *right;

»

B\ AEN

F@% F lnuul NuLL GI \l Huul H NULL

HULL I NuLL |HULL| J |NuLl HuULL

Advantages:

— No memory Wastage

— Size of the depth is not fixed

— Insertion and deletions can perform at any node with out moving other nodes.
Disadvantages:

— No direct access for a node.

— Additional space for storing left and right child address and at leaf level we are storing

NULL.

BINARY TREE TRAVERSALS:-

e Traversing a binary tree is the process of visiting every nodes in the tree exactly once in

systematic way.
In linear data structures we can traverse the elements in sequential order, but in non-linear

data structures we can traverse the elements in different ways.

There are different algorithms for traversal

(i) Pre Order Traversal
(ii) In Order Traversal Depth First Traversal

(iii) Post Order Traversal

(iv) Level Order Traversal mm Breadth First Traversal

Pre Order (NLR) InOrder (LNR) Post Order (LRN)

(i) Preoder Traversal:-
e To traverse a non-empty binary tree in preorder the following
operations are performed recursively at each node.
— Visit the root node
— Traverse the left sub-tree
— Traverse the right sub-tree

¢ In this root node is visited before traversing its left and right sub-trees.

void Preorder (node *root)

{

if (root == NULL)
return;
cout<< root->data;
Preorder(root->left);
Preorder(root->right);

Preorder Traversal : A.B,D,.E,C,F,G

(i) Inoder Traversal:-
e To traverse a non-empty binary tree in Inorder the following operations
are performed recursively at each node.
— Traverse the left sub-tree
— Visit the root node
— Traverse the right sub-tree
e In this left sub-tree is traversed recursively before visiting root node.

e After visiting the root node the right sub-tree is traversed recursively.

void Inorder (node *root)
{
if (root == NULL)
return;
Inorder(root->left);
cout<< root->data;
Inorder(root->right);

I Inorder Traversal : D, B,E, A ,F,C G I

(iii) Postoder Traversal:-
e To traverse a non-empty binary tree in Postorder the following operations
are performed recursively at each node.
— Traverse the left sub-tree
— Traverse the right sub-tree
— Visit the root node
e In this left sub-tree is traversed recursively before traversing right sub-

tree, After traversing right sub-tree visit root node.

void PostOrder(node *root)
{
if (root == NULL)
return;
PostOrder(root->left);
PostOrder(root->right);

cout<< root->data;
’ Postorder Traversal:D,E,B,F,G,C A

(iv) Level Order Traversal:-
e Level Order Traversal is also called as Breadth First Traversal
e In Level Order Traversal all the nodes are visited at a level are accessed before

going to the next level from left to right.

Level Order Traversal: A,B,C,D,E,F,G

Expression Tree:

e The trees are used to represent an expression and those are called expression

trees.
The following expression is represented using the binary tree, where the leaves

represent the operands and the internal nodes represent the operators.

(A+B)*C

A+B*C

+A*BC PreOrder : *+ABC
InOrder: A+B*C
PostOrder : AB+C*

PreOrder :
InOrder: A+B*C
PostOrder : ABC*+

[Threaded Binary Tree:-]

e In binary tree, the leaf nodes have no children. Therefore the left and right fields of the leaf

nodes are made NULL. But NULL waste memory space so to avoid NULL in the node we

will set threads.

e The number of nodes containing in the tree is less than the number of NULL pointers.

THREADS:
The NULL pointers are replaced by a pointer to the inorder predecessor or inorder successor

of a node. These special pointers are called Threads. The binary tree congaing the threads

are called Threaded binary tree.
e We are representing the threads by using arrows(=2).

To construct threads we use the following rules.
If ptr>left is NULL, replace ptr->left with a pointer of its inorder predecessor.

If ptr>right is NULL, replace ptr->right with a pointer of its inorder successor.

The structure of a threaded binary tree node is as follows
class Node

{ . . P
bool leftThread, rightThread: LefiThread LeftChild data RightChild RightThread

FALSE

¥

char data;
Node *leftChild, *rightChild,;

The leftThread and rightThread values are either TRUE or FALSE
— If leftThread is pointing to thread (inorder predecessor) then it is TRUE otherwise
FALSE

— Similarly rightThread is pointing to thread (inorder successor) then it is TRUE
otherwise FALSE
Here the nodes H and F having NULL pointer because those nodes are not having inorder
predecessor and inorder successor respectively.
In order to avoid those situations a Head node can be used. In head node left child
pointing to the root node and right child is pointing to itself.
Advantages:
— Wastage of memory by NULL pointers is utilized by using threads.
— Intraversal, the predecessor node and successor node of any node can be accessed
effectively.
Disadvantages:
— Insertion and deletion of a node is much complex because thread link manipulations
required for every insertion and deletion.

/

s
)

>

- -
r'"'-‘-‘-"

i [=2 = = =

Sf=FALSE; r=TRUE

INORDER TRAVERSAL OF A THREADED BINARY TREE:

e We start at the leftmost node in
the tree, print it, and follow its
right thread
If we follow a thread to the right,
we output the node and continue
to its right

e If we follow a link to the right, we
go to the leftmost node, print it, and
continue InOrder Traversal is: H-D-1-B-E-A-F-C-G

INSERTION OF NODE INTO THREADED BINARY TREE:

Inserting a new node X as the left child of a node:

CASE 1: If a node has an empty left subtree, then the

insertion is simple.

CASE 2: If the a node having non-empty left subtree,

then this left child is made the left of new node after

insertion.

Inserting a node X as the right child of a node: O
CASE 1: If a node has an empty right subtree, then the

insertion is simple.

CASE 2: If the a node having non-empty right subtree,
Inserting node 5

then this right child is made the right of new node after

insertion.

Inserting Node 15 into threaded binary tree

[Priority Queue:-]

e Priority Queue is a data structure having the collection of elements, which is associated with

priorities.
An element with high priority is dequeued before an element with low priority.

If two elements have the same priority, they are served according to their order in the queue.

ADT Priorty_Queue
{

Instances:
Finite collection of elements associated with some priority
Both front and rear with in max size
Operations:
Create(); ISEmpty(); IsFull(); enQueue(item);
deQueue(); display();
Basic Operations in Priority Queue:

It allows two operations diletelifin insert

1. Insert (enQueue) . Priority Queue

2. DeleteMin (deQueue)
e The smaller element in priority Queue having high priority, so find the smaller element and
delete it first.
Implement priority queue:

Array: A simple implementation is to use array of following structure.
e insert() operation can be implemented by adding an item at end of array in O(1) time.
e DeleteMin () operation can be implemented by first linearly searching an item, then
removing the item by moving all subsequent items one position back.
Linked List, time complexity of all operations with linked list remains same as array. The
advantage with linked list is DeleteMin() can be more efficient as we don’t have to move items.

HEAP:-
A Heap tree is complete binary tree with the property of the value at each node is as larger as (as
smaller as) the value of its child nodes. Heap tree also called as Binary Heap.
There are two types of heap and they are as follows...
1. Max Heap (Root node must be greater than its child nodes)
2. Min Heap (Root node must be lesser than its child nodes)
Every heap data structure has the following properties...
Property #1 (Ordering): Nodes must be arranged in an order according to values based on Max

heap or Min heap.

Property #2 (Structural): All levels in a heap must full, except last level and nodes must be filled

from left to right strictly.

Max Heap/ Max Tree:

e Max heap is a specialized complete binary tree. It is also called as max tree. A max tree is a
tree in which the value of parent node is larger than the values of its children.
The following tree is satisfying both Ordering property and Structural property according to

the Max Heap data structure

Operations on Max Heap:
The following operations are performed on a Max heap data structure...
1. Finding Maximum
2. Insertion
3. Deletion
Finding Maximum Value Operation in Max Heap
Finding the node which has maximum value in a max heap is very simple. In a max heap,
the root node has the maximum value than all other nodes. So, directly we can display root
node value as the maximum value in max heap.

Insertion Operation in Max Heap:

Algorithm
Step 1: Insert the newNode as last leaf from left to right.
Step 2: Compare newNode value with its Parent node.
Step 3: If newNode value is greater than its parent, then swap both of them.
Step 4: Repeat step 2 and step 3 until newNode value is less than its parent nede (or) newNode
reached to root.
Example:
Consider the above max heap. Insert a new node with value 85.

Step 1 - Insert the newNode with value 85 as last leaf from left to right. That means newNode is

added as a right child of node with value 75.

Step 2 - Compare newNode value (85) with its Parent node value (75). That means 85 > 75

Step 3 - Here newNode value (85) is greater than its parent value (75), then swap both of them.
After swapping, max heap is...

Step 4 - Now, again compare newNode value (85) with its parent node value (89).

Here, newNode value (85) is smaller than its parent node value (89). So, we stop insertion process.

Finally, max heap after insertion of a new node with value 85 is as follows...

root

Deletion Operation in Max Heap
Deleting root node from a max heap is little difficult as it disturbs the max heap properties. We use

the following steps to delete the root node from a max heap...

Algorithm:

Step 1 — Remove root node.
Step 2 — Move the last element of last level to root.
Step3 — Heapify (Fix the heap):
if the heap property holds true
then you are done.
else if the node value >= its parent nodes value
then swap them, and repeat step 3.
else
swap the node with the largest child node, and repeat step 3.

Example
Consider the above max heap. Delete root node (90) from the max heap.

Step 1 - Swap the root node (90) with last node 75 in max heap. After swapping max heap is

root root

() N

'
® O @ @ W

Step 2 - Delete last node. Here the last node is 90. After deleting node with value 90 from

heap, max heap is as follows...
Step 3 - Compare root node (75) with its left child (89). Here, root value (75) is
smaller than its left child value (89). So, compare left child (89) with its right sibling (70).

oot

No

® 06 ® @O

Step 4 - Here, left child value (89) is larger than its right sibling (70), So, swap root
(75) with left child (89).

root
@

D) :
@ @O® @ O

Step 5 - Now, again compare 75 with its left child (36). Here, node with value 75 is larger

than its left child. So, we compare node 75 with its right child 85.
Step 6 - Here, node with value 75 is smaller than its right child (85). So, we swap both of

them. After swapping max heap is as follows...

root

>E)

©

@ ® ® ®
® @0 ® @E®

Step 7 - Now, compare node with value 75 with its left child (15). Here, node with

value 75 is larger than its left child (15) and it does not have right child. So we stop the
process.
Finally, max heap after deleting root node (90) is as follows...

root

@

@ ®)
@ @E @ (@®

[Binary Search Tree:-]

A Binary tree is said to be Binary Search Tree it should satisfies the following

1. Left Sub-tree value lesser than the root node

2. Right Sub-tree value greater than or equal to the root node

3. Both left sub-tree and right sub-tree are also recursively satisfies these properties and
itself a binary search tree.

Binary search tree is also called Ordered

Binary Tree.

The reason why we go for a Binary Search

tree is to improve the searching efficiency.

The average case time complexity of the

search operation in a binary search tree is

O(logn).

Operations on Binary Search Tree

The following operations can be performed on BST.

1. Create
2. Search
3. Insertion
4. Deletion

Creation of Binary Search Tree:

insert (10) insert (12) insert (5)
@2 CO I CE)
insert (4) insert (20) insert (8)
(10) (10) (10)
© (& @ @ G @

insert (7) insert (15) insert (13)

(10) (10) (10)
(5 @ (5. @ (5 @
@ @ @3 @ @3

13

Consider the following list of numbers. A binary search tree can be constructed using this list

of numbers, as shown.
38, 14, 8, 23, 18, 20, 56, 45, 82, 70

Initially 38 is taken and placed as the root

node. The next number 14 is taken and

compared with 38. As 14 is lesser than 38, it is

placed as the left child of 38.

Now the third number 8 is taken and

compared starting from the root node 38.

Since is 8 is less than 38 move towards left of 38. Now 8 is compared with 14, and as it is

less than 14 and also 14 does not have any child, 8 is attached as the left child of 14.
18

e This process is repeated until all the numbers are inserted into the tree. Remember that if a
number to be inserted is greater than a particular node element, then we move towards the

right of the node and start comparing again.

Search Operation In Binary Search Tree:

e The search operation on a BST returns the address of the node where the element is
found. The pointer LOC is used to store the address of the node where the element is
found.

e Initially the pointer TEMP is made to point to the root node.

Process:

— Let us search for a value 70 in the following BST. Let KEY = 70.
The KEY value is compared with 38. As KEY is greater that 38, move TEMP to the
right child of 38, i.e., 56.
KEY is greater than 56 and hence we move TEMP to the right child of 56, which is
82.
Now since KEY is lesser than 82, TEMP is moved to the left child of 82.
The KEY value matches here and hence the address of this node is stored in the
pointer LOC.

Algorithm SEARCH(ROOT, KEY)
temp = ROOT, loc = NULL
while temp # NULL

If KEY = =temp - data ;

loc =temp ;
break;

If KEY < temp - data
temp = temp > left

else
temp=temp -> right

Insert Into In A Binary Search Tree:

The BST itself is constructed using the insert operation described below. Consider the
following list of numbers. A binary tree can be constructed using this list of numbers.
38, 14, 8, 23, 18, 20, 56, 45, 82.

For example we want to insert the element is 70. While inserting a node into the binary
search tree first we have find the appropriate position in the binary search tree. We start
comparing the node value 70 with the root if it is greater than the root then it is inserted on the
right branch of the root else on the left branch of the root.

Now compare the node 70 with root node 38. As node 70 is greater than the root 38 we

will move to the right subtree. Now compare node 70 with the node 56 as it greater then move

to right and compare node 70 with node 82 as it less than the node 82 we attach 70 as left child

of node 82. The diagram is shown below.

Algorithm INSERT(ROOT, item)

. Read the value for the node which is to be created and store it into a node called Cur.

. Initially if(root!=NULL) then root = Cur

. Again read the next value of node created in Cur

. If (Cur - data < root - data) then attach the Cur node as a left child of root otherwise attach
the Cur node as a right child of root node.

. Repeat step3 and step4 for constructing required binary search tree completely.

Deletion From A Binary Search Tree:
The deletion of a node from a binary search tree occurs with three possibilities

1. Deletion of a leaf node.
2. Deletion of a node having one child.
3. Deletion of a node having two children.

1. Deletion of a leaf node
This is the simplest deletion in which we can simple remove it from the tree. For example

consider the binary search tree.
From the above tree diagram the node we want to delete is the node 8(temp), then we

will set the left pointer of its parent (node 14) to NULL. Then after deletion the binary search

tree is as follows.
ROOT

Algorithm
if(temp—>left = = NULL && temp->right == NULL)
if(parent > left = = temp)
parent - left = NULL

else
parent - right = NULL

2. Deletion of a node having one child
The node if we want to delete is having only one child (i.e. either left or right child),

delete it and replace it with its child. From the diagram the node we want to delete is having
the value 18 then we simple copy node 21 at the place of 18 and set the node free.

Algorithm

if(temp =2 left I=NULL && temp - right == NULL)

if(parent - left ==temp)
parent - left = temp - left

else
parent - right = temp > left

delete temp

if(temp = left = =NULL && temp - right '= NULL)

if(parent > left = =temp)
parent 2> left = temp - right

else
parent - right = temp - right
delete temp

3. Deletion of a node having two children

Suppose the node to be deleted is called N, We replace the value of N with either its
inorder successor (the left-most child of the right subtree) or the inorder precedessor(the right-
most child of the the left subtree).

The node if we want to delete is having two children. From the diagram the node we

want to delete is having the value 12 then we find the inorder successor of the node 12 is 19

and it is copied at the place of 12 and set the node 21 left pointer to right of 19.

Algorithm
if(temp - > left '= NULL && temp - > right != NULL)

parent = temp

temp_succ = temp - > right

while(temp_succ - > left I= NULL)
parent = temp_succ
temp_succ = temp_succ - > left

temp - > data = temp_succ - > data

parent - > left = temp_succ->right

delete temp_succ

temp

parent

temp_succ

HEIGHT OF A BINARY SEARCH TREE

e The height of a binary search tree with “n” elements can become as large as “n”.

e Forinstance, when the values like 1, 2, . . n are inserted into the empty binary search tree.

e If insertions and deletions are made at random then the height of the binary search tree is
O(log n) on average.
Search trees with worst case height of O(log n) are called balanced search trees. These
trees permit insertions, deletions and searches to be performed at time O(h). for example,
AVL trees, Red / Black Trees, B-Trees, 2 — 3 Trees etc.
Balanced Tree : A balanced tree is a tree where both left child and right child having same

number of nodes.

*kkhkhkhkhkhkikk

SYLLABUS: UNIT-V

Graph: Terminology, Graph Representation, Abstract Data Type, Elementary Graph Operation:
Depth First Search, Breadth First Search, Connected Components, Bi-connected Components,
Spanning Trees, Minimum Cost Spanning Trees: Kruskal S Algorithm, Prim s Algorithm,
Sollin’ s Algorithm, Shortest Paths and Transitive Closure: Single Source/All Destination
Nonnegative Edge Cost, Single Source/All Destination: General Weights, All-Pairs Shortest Path,
Transitive Closure.

[%&

A graph is defined as G = (V,E):

V: set of vertices

E: set of edges connecting the vertices in V, V={ab,c,de}
An edge E = (u,v) is a pair of vertices. E={(a,b),(a,c),(a,d),(b,e),(c,d),(c,e),(d,e)}
Graph Terminology:-

e Undirected Graph: An Undirected graph is a graph, in which all the edges have no
direction. The edge (u,v) is identical to (v,u).
Directed Graph: A directed graph (di-graph) is a graph, in which all the edges have
direction.
Mixed Graph: A mixed graph is a graph, in which some of the edges having the direction
and some of the edge are not having the direction.
Multi-Graph: In a multi-graph, there can be more than one edge from vertex P to vertex Q.

In a simple graph there is at most one.

° o °'° Multi-Graph
° ° o Mixed-Graph

Undirected Graph Directed Graph

e Sub-Graph: A sub-graph of G is G’, it consists V(G’) is a subset of V(G) and E(G’) is a
subset of E(G)

ECRERC Q> @
2> CORENED EDRED
(i) (ii) (iii) (i)
Some of the subgraph of G,

Adjacency: Let an edge E is having in between pair of vertices (u,v) then u and v are
adjacent to each other.

o (vO, vl) is an edge in an undirected graph, vO and v1 are adjacent
o (v0, vl) is an edge in an directed graph, vO is adjacent to v1, and v1 is
adjacent from vO

Path: It is sequence of vertices; every vertex is adjacent to the next vertex.

Cycle: It is path containing minimum of three vertices, the stating vertex and last vertex

must be same.

Loop (Self-Edge): A self loop is an edge that connects a vertex to itself.

cycle 1-2-0-1
cycle 0-1-2-0
cycle 2-0-1-2

o ° path 2-0-3-4
path 2-1-0-3-4

Self Loop at Vertex a

Connected Graph: A graph is said to be connected, if there exist a path between any two
vertices u and v otherwise the graph is disjoint or disconnected graph.

- The total number of edges in connected graph is n-1
Complete Graph: A graph is said to complete graph if there exist an edge from every
vertex to every other vertex.

- The total number of edges in undirected complete graph is n(n-1)/2

- The total number of edges in directed complete graph is n(n-1)
B

D

Connected Graph Complete Graph

Weighted Graph: A graph is said to be weighted graph, if every edge in the graph is
assigned by some weights or values or lengths.
Degree: The degree of a vertex is the number of edges incident to that vertex
For directed graph,
— The in-degree of a vertex v is the numbers of edges are terminated (head).

— The out-degree of a vertex v is the numbers of edges are started (tail)

b (1) (2)

b (3)
a c a ! c
(1) (2
) @) (3) ()
out,in
3)
2)
f a f

d
) {0) (2) (1 (1)
Un-Directed Graph Directed Graph

Undirected Directed

Graph ADT:-
ADT Graph

{

Instances: a nonempty set of vertices and a set of edges, where each edge is in between a pair of
vertices.

Operations:

Create(); /lreturn an empty graph

InsertVertex(V); /[insert V in to the graph

InsertEdge(u,v); Il insert new edge between u and v
DeleteVertex(V); /I delete V from the graph

DeleteEdge(u,v); /I delete an edge from graph between u and v
Bool IsEmpty(graph); //return TRUE else return FALSE

Adjacent(V); /l return a list of all vertices that are adjacent to V

int degree(V); /I returns degree of a vertex V

¥

[Graph Representations: }

Graph data structure is represented using following representations...

1. Adjacency Matrix (sequential or Array Representation)

2. Adjacency List (Linked List Representation)

1. Adjacency Matrix:

In this representation, the graph is represented using a matrix of size total number of vertices by a
total number of vertices. That means a graph with 4 vertices is represented using a matrix of size
4X4. In this matrix, both rows and columns represent vertices. The elements are filled with either
1 or 0. Here, 1 represents that there is an edge from row vertex to column vertex and 0 represents

that there is no edge from row vertex to column vertex.

For example, consider the following undirected graph representation...

A
-

.
— The sum of all values in a row is equivalent to the out degree of a vertex.

— The sum of all values in a column is equivalent to the in degree of a vertex.

Advantages:
— Easy to store and manipulate matrices.

— Finding the cycles and path in a graph is easy.
Disadvantage: The space requires for a graph having N vertices is NXN, but the matrix contain
only few elements.

2. Adjacency List:

— Inthis representation, every vertex of a graph contains list of its adjacent vertices.
— The structure contain list of all the vertices, every vertex having its own link to its own list,
the list contain all adjacent vertices.

For example, consider the following graph representation implemented using linked list...

>[B[+—>[CIX
—>[D[+—>[E[X]
DX
A D

Advantage: It is clearly showing what the adjacent vertices for a vertex are.

Elementary Operations:

The following are some graph operations:
a) Traversals

— Depth First Search (DFS) preorder tree traversal

— Breadth First Search (BFS) level order tree traversal
b) Spanning Trees

c¢) Connected Components, BiConnected Components

[Graph Traversals:]

Traversals mean visiting all the vertices in a graph at once in systematic way.

There are two types of graph traversals, they are
1. Depth First Search (DFS)
2. Breadth First Search (BFS)

Depth First Search (DES):-
— In DFS we are using the application of STACK.

— In graphs there is no root node or start vertex, so we can take any arbitrary vertex as starting
vertex.
The process/Algorithm of DFS is
I. Push the start vertex in to STACK
ii. Repeat process until STACK is empty
a. Pop the vertex at top of the STACK
b. Process the vertex
c. Push the adjacent vertices in to the STACK for popped vertex.
Example: Consider the graph G along with its adjacency list, given in the figure below.

Adjacency Lists

:B, D
:C, F
:E, G, H
' E, H
:B, F

: A

. F

: A

I om"Tm@GeO o Pk

Solution:
Let the starting vertex of the graph is H.
1. Push H onto the stack
STACK:H

. POP the top element of the stack i.e. H, print it and push all the adjacent vertices of H onto
the stack that are is ready state.

Print H
STACK : A

. Pop the top element of the stack i.e. A, print it and push all the adjacent vertices of A onto

the stack that are in ready state.

Print A
Stack : B, D

. Pop the top element of the stack i.e. D, print it and push all the adjacent vertices of D onto
the stack that are in ready state.

Print D
Stack : B, F

. Pop the top element of the stack i.e. F, print it and push all the adjacent vertices of F onto
the stack that are in ready state.

Print F
Stack : B

. Pop the top of the stack i.e. B and push all the adjacent vertices

Print B
Stack : C

. Pop the top of the stack i.e. C and push all the adjacent vertices.

Print C
Stack : E, G

. Pop the top of the stack i.e. G and push all its adjacent vertices.

Print G
Stack : E

. Pop the top of the stack i.e. E and push all its adjacent vertices.

Print E
Stack :

Hence, the stack now becomes empty and all the nodes of the graph have been traversed.

The printing sequence of the graph using DFSiss H - -A—-D—>F—->B—>C—>G—>E

Breadth First Search (BES):-
— In BFS we are using the application of QUEUE.

— In graphs there is no root node or start vertex, so we can take any arbitrary vertex as starting
vertex.
The process/Algorithm of BFS is
i. Enqueue the start vertex in to QUEUE
ii. Repeat process until QUEUE is empty
a. Dequeue the vertex at front of the QUEUE

b. Process the vertex
c. Engueue the adjacent vertices in to the QUEUE at rear end, for dequeue vertex.

Example: Consider the graph G along with its adjacency list, given in the figure below.

Adjacency Lists

:B, D
: C, F

" (B) ‘E, G

/ N/ \ [e

:=-j_ F j{ :F

Solution: Lets start vertex of the graph is Node A.
1. Insert node A into QUEUE
QUEUE = {A}

2. Delete the Node A from QUEUE and insert all its adjacent vertices.

QUEUE ={B, D}
Print A

3. Delete the node B from QUEUE and insert all its adjacent vertices.

QUEUE={D,C, F}
Print B

4. Delete the node D from QUEUE and insert all its adjacent vertices. Since F is the only neighbour
of it which has been inserted, we will not insert it again.

QUEUE ={C, F}
Print D

5. Delete the node C from QUEUE and insert all its adjacent vertices.

QUEUE ={F, E, G}
Print C

6. Remove F from QUEUE and add all its adjacent vertices. Since all of its adjacent vertices has
already been added, we will not add them again.

QUEUE = {E, G}
Print F

7. Remove E from QUEUE, all of E's adjacent vertices has already been added to QUEUE
therefore we will not add them again.

QUEUE = {G}
Print E

8. Remove G from QUEUE, the adjacent vertices has already been added to QUEUE therefore we
will not add them again.

QUEUE ={}
Print G

Hence, the QUEUE is now becomes empty and all the nodes of the graph have been traversed.
The printing sequence of the graph using BFSiss A—-B—-D—->C—>F—>E—>G
Applications of DFS:

- Undirected Graph o
o Connected Components °

o Articulation Points

o Bi-Connected Components

- Directed Graph o °'°
o Cyclic or Acyclic Graph .o
Connected Component: 0‘ °

Connected component of an undirected graph is a

subgraph in which any two vertices are connected to 3 Connected Components

each other by paths, and which is connected to no
additional vertices in the supergraph.

Articulation point: An Articulation point in a connected graph is a vertex that, if delete, would

break the graph into two or more pieces (disjoint graphs).

Biconnected graph: A graph with no articulation point is called biconnected graph. In other words,

a graph is biconnected if and only if any vertex is deleted, the graph remains connected.

Biconnected component:
— A biconnected component of a graph is a maximal biconnected subgraph, a biconnected
subgraph that is not contained in a larger biconnected subgraph.

A graph that is not biconnected can divide into biconnected components, sets of nodes

mutually accessible via two distinct paths.

(a) Connected graph (b) Biconnected components

Spanning Tree:-
— A spanning tree of a graph is a subgraph in includes all of the vertices of a graph, without
any cycles.
A graph may have one or more number of possible spanning trees.
If a graph containing N vertices then the total numbers of possible spanning trees are N"-

and every spanning tree is having maximum number of edges will be N-1.

[Minimum Cost Spanning Tree: 1

— In weighted connected graph, the minimum cost spanning tree is a spanning tree that has

minimum weights than all other spanning trees.

— Weight or cost of spanning tree is sum of weights of all edges in the spanning tree.

All Possible Spanning Trees

There are three popular techniques for finding the minimum cost spanning tree for any graph.
1. Kruskal’s Algorithm
2. Prim’s Algorithm
3. Sollin’s Algorithm

1. Kruskal’s Algorithm:
— Kruskal’s Algorithm follows greedy method.

— In Greedy algorithm, first off all we check all possibilities of a given problem, then at
the first stage we select that which can give optimal solution.
Every time picking the minimum weighted edge from the graph and draw the edge between
vertices in minimum cost spanning tree and it shouldn’t form any cycles.
The same process is repeated until all the vertices are connected then we will find the
minimum cost spanning tree for the given graph.

Algorithm;
. Sort all Edges of weights in ascending order

Initially the MST is empty
Repeat until the graph containing N-1 number of edges
a. Pick an edge and insert into MST, if it is not forming the cycle then consider the edge.
b. Otherwise remove the edge from the MST.

4. Return MST.

Example:

A Simple Weighted Graph Minimum-Cost Spanning Tree

Example:

Procedure for finding Minimum Spanning Tree

Stepl. Edges are sorted in ascending order by weight.

Edge No. Vertex Pair Edge Weight

El (0,2)

E2 (3,5)

E3 (0,1)

E4 (1,4)

E5 (2,5)

E6 (1,2)

E7 (2,3)

ES (0,3)

E9 (2,4)

(4.5)

Step2. Edges are added in sequence.

Add Edge E1

Add Edge E2

Add Edge E3

7T

[2 |
\ }
S

-

Add Edge E4 T
3
L

7
7

Add Edge E5

Minimum Cost = 142+3+3+4 =13

2. Prim’s Algorithm:

— Prim’s Algorithm is used to find the minimum cost spanning tree.

— It is a greedy algorithm. It starts with an empty spanning tree MST. At every step, it
considers all the edges and picks the minimum weight edge. After picking the edge, it
moves the other endpoint of edge to set containing MST.

Algorithm:
1. Create MST set that keeps track of vertices and included in MST.

2. Assign key values to all vertices in the input graph. Initialize all key values as INFINITE
(0). Assign key values like 0 for the start vertex so that it is picked first.

3. While MST set doesn't include all vertices.

a. Pick vertex u which is not is MST set and has minimum key value. Include 'u' to
MST set.

Update the key value of all adjacent vertices of u. To update, iterate through all

adjacent vertices. For every adjacent vertex v, if the weight of edge (u,v) less than

the previous key value then update key value as a weight of new edge.

Example:

14

14 AL
Gy \
_\

R“ \/12

3
- A
Weighted Connected Graph

Minimum Cost Spanning Tree

VERTICES O

Key-Value 0 0 0 0 0 0 MST=[0]

Key-Value, Adj(0) - 0 0 0 0 MST=[0,3] edge(0,5)=10

Key-Value, Adj(5) - 0 0 - 0 MST=[04.5] edge(5,4)=25

Key-Value, Adj(4) - 0 - - MST=[0.3,4,5] edge(4,3)=22

Key-Value, Adj(3) - - - - MST=[0,2,3,4,5] edge(3,2)=12

Key-Value, Adj(2) - - - - - MST=[0,1,2,3.4,5] edge(2,1)=16

Key-Value, Adj(1) - - - - - - MST=[0,1,2,3,4,5,6] edge(1,6)=14

Key-Value, Adj(6) Tl thie verticos in the TA ST Total Cost = 10+25+22+12+16+14 = 99

T
‘/ ‘

2]

&N

A Simple Weighted Graph Minimum-Cost Spanning Tree

SN

Procedure for finding Minimum Spanning Tree

Stepl

No. of Nodes
Distance
Distance From

No. of Nodes
Distance
Distance From

No. of Nodes
Distance
Distance From

No. of Nodes
Distance
Distance From

No. of Nodes
Distance
Distance From

Minimum Cost = 1+2+3+3+4 =13

3. Sollin’s Algorithm:

Sollin’s Algorithm is used to find the minimum cost spanning tree (MST).
It was the first algorithm to find the MST.
— It follows Greedy Algorithm similar to Kruskal’s and Prim’s Algorithm.
Process (Algorithm):

Stepl: Each vertex to be a component, denote the graph T
Step2: For each component Cin T, find the cheapest edge connecting to another component

Step3: If this edge is not in T, add it to T, Repeat step2 until all the components are connected.

Example:

22

weighted Connected Graph Minimum Cost

Spanning Tree
Stepl: Write all the components in the given graph.

Step2: Choose the starting vertex as 0, choose cheapest edge as 10 and it not forming any cycles.
Select vertex 5.
Step3: At vertex 5, choose cheapest edge as 25 and it not forming any cycles. Select vertex 4.

Step4: At vertex 4, choose cheapest edge as 22 and it not forming any cycles. Select vertex 3.

®

@) (b) (

© (0) (0)
®y'® 10@ 10 @
® © @ ® ®® ® ® @ ® ® @
® @@ @ 09

(0)

/O WS 16
2 O, @ @f) & ®©

o 2212 12

2 (3

(e) (") (g)
Minimum Cost = 10+25+22+12+16+14 = 99

Stepb: At vertex 3, choose cheapest edge as 12 and it not forming any cycles. Select vertex 2.
Step6: At vertex 2, choose cheapest edge as 16 and it not forming any cycles. Select vertex 1.
Step7: At vertex 1, choose cheapest edge as 14 and it not forming any cycles. Select vertex 6.
Step8: All the vertices are in MST. So stop the procedure.

[Single Source Shortest Path:

Dijkstra’s Algorithm:

— Dijkstra’s algorithm solves the single-source shortest-paths problem on a directed weighted

graph G = (V, E), where all the edges are non-negative (i.e., w(u, v) > 0 for each edge).

— Dijkstra's algorithm is follow greedy algorithm that solves the shortest path problem for a
directed graph G. Dijkstra's algorithm solves the single-source shortest-path problem when
all edges have non-negative weights.

Algorithm:

1. Start with the empty Shortest Path Tree (SPT), keep track to vertices and included into SPT.

2. Assign a distance value to all the vertices, initialize all the distances with +oo (Infinity) except the
source vertex. Distance of source vertex to source vertex will be 0.

3. Repeat the following steps until all vertices are added to SPT.

a) Pick the vertex u which is not in SPT[] and has minimum distance.

b) Add vertex u to SPT[].

c) Update the key value of all adjacent vertices of u. To update, iterate through all adjacent
vertices. For every adjacent vertex v, if the distance from source vertex to adjacent vertex
(u,v) less than the previous key value then update key value of new distance.

For adjacent vertex v, if v is not in SPT[] and
distance[v] > distance[u] + edge u-v weight
update distance[v] = distance[u] + edge u-v weight

Example:

Weighted Connected Graph Single Source Shortest Path

17

VERTICES

Key-Value) - w0 0 0 SPT=[a]
dla]=0 |Key-Value, Adj(a) e 0 . SPT={a,c]
dic]=2 |Key-Value, Adj(c) - 2+8(c) 2+10(c) . SPT=[a,b.q]
dib]=3 |Key-Value, Adj(b) - 3+5(b) | 2+10(c) 0 SPT=[a.b,c.d]
did=8 |Key-Value, Adj(d) - - 8+2(d) |[8+6(d) | sPT=[ab.cd.e]
dle]=10 | Key-Value, Adj(e) - - - 8+6(d) || SPT=[a,b,c.d.e,2]

dlz]-14 |Key-Value, Adj(z) Tt verticos inthe TUST SPT=[a,b,cAd,e,z]

Example

Procedure for Dijkstra's Algorithm
Stepl

Consider A as source vertex

No.of Nodes | A| B | C
Distance 0| |oo
Distance From

Step2

Consider A as source vertex

No.of Nodes |A| B | C
Distance -110] 3
Distance From AlA

Step3

Now consider vertex C

No. of Nodes | A
Distance -
Distance From

Step4

Now consider vertex E

No. of Nodes | A
Distance -
Distance From

Step5

Now consider vertex B

No. of Nodes | A
Distance -
Distance From

Step5
Now consider vertex D, All the vertices are in SPT

No.of Nodes |A|B|C |D|E
Distance -l -] - - -
Distance From

Thus we get all shortest path vertex as

Weight from Ato Cis 3

Weight from A to E is 5 (A-C-E)

Weight from Ato B is 7 (A-C-B)

Weight from Ato D is 9 (A-C-B-D)

These are the shortest distance from the source's' in the
given graph.

[All-Pair Shortest Path:

Transitive Closure:

— The Transitive closure of directed or undirected graph G is, directed graph that has all the
vertices and an edge (u,v) iff there is a path from u to v in the graph.
— Transitive closure of a matrix A" is
A" [i][j] = 1, if there is a path of length>0 from I to j
A" [i][j] = 0, otherwise
Example:

All-Pairs Shortest Paths:

— Itaims to figure out the shortest path from each vertex U to every other V.

— All pairs-shortest path problem is aim to find just the distance from each vertex to each
another vertex in the graph.

Warshall Algorithm:

— This algorithm construct the transitive closure of given digraph through series of matrices
R,RLRELRY...LR".
The order of all series of matrices is nXn, where is the number of vertices in the given
digraph.
R%is equivalent to Adjacency matrix and the final matrix R" is the Transitive closure matrix.
In matrix R the element at i row and jth column will be ‘1°, if there exist a path of positive

length from vertex i to vertex j with intermediate nodes of k, otherwise ‘0’.

J k J k

— Initially we are finding R® matrix, in that number of intermediate nodes are equal to zero.
So, it is called adjacency matrix.
R\> RS> R>R>....>R"

— In each matrix RK, the elements can be found by using the formula
R¥i,j] ={ R“"[i,jl OR (R“'[i,k] AND R“'[k,]) }

ALGORITHM Warshall(A[1..n, 1..n])

//Tmplements Warshall’s algorithm for computing the transitive closure
/Input: The adjacency matrix A of a digraph with n vertices
//Output: The transitive closure of the digraph
RO « A
for k < 1tondo
fori < 1tondo
for j < 1tondo
R®[i, j1< R*V[i, jlor (R*V[i, k]and R*~V[k, j])
return R

Example:

1 2 3 4

4

0 | (17

1 2 11 1

0 310 O

G) 0 | (11

4

0
0
0

1

Ones reflect the existence of paths

with no intermediate vertices

(RD s just the adjacency matrix);

boxed row and column are used for getting R

3
0
0
0) =
RO = 0
1

1
2
3
4

Let the elements in R matrix, means number of internal nodes will be 1

R'[1,1] ={ R°[1,1] OR (R°[1,1] AND R°[1,1]) } = {0 OR (0 AND 0)} =0
R'[1,2] ={ R°[1,2] OR (R°[1,1] AND R"[1,2]) } = {1 OR (0 AND 1)} =1
R'[1,3] ={ R%[1,3] OR (R°[1,1] AND R[1,3]) } = {0 OR (0 AND 0)} =0
R'[1,4] ={ R%[1,4] OR (R°[1,1] AND R[1,4]) } = {0 OR (0 AND 0)} =0
R'[2,1] ={ R°[2,1] OR (R°[2,1] AND R°[1,1]) } = {0 OR (0 AND 0)} =0
R'[2,2] ={ R°[2,2] OR (R°[2,1] AND R"[1,2]) } ={OOR (0 AND 1)} =0

Similarly we can find the remaining elements in R* matrix

Ones reflect the existence of paths

with intermediate vertices numbered

not higher than 1, i.e., just vertex 4

(note a new path from 4 to 2);

boxed row and column are used for getting R,

Ones reflect the existence of paths

with intermediate vertices numbered

not higher than 2, i.e., 1 and 2

{note two new paths);

boxed rovw and column are used for getting [3),

Ones retlect the existence ot paths

with intermediate vertices numbered

not higher than 3. i.e., 1,2and 3

(no new paths);

boxed row and column are used for getting F&.

Ones reflect the existence of paths
with intermediate vertices numbered
not higher than 4, i.e., 1,2,3 and 4
(note five new paths).

The strategy adopted by the Floyd-Warshall algorithm is Dynamic Programming. The running

time of the Floyd-Warshall algorithm is determined by the triply nested for loops of lines to the

elements in each matrix. Each execution of line of element takes O (1) time. The algorithm thus

runs in time 6(n*).

Time Complexity:

Traversals(BFS, DFS)

O(V+E)

Kruskal’s Algorithm(MST)

O(E logV)

Prim’s Algorithm(MST)

O((V+E) log V)

Sollin’s Algorithm(MST)

O(V+E)

Dijkstra’s Algorithm(Single Source)

O(E logV)

Floyd-Warshall Algorithm (All-Pair)

o(V?)

	UNIT- 1.pdf (p.1-16)
	DATA STRUCTURE:-
	1. Linear Data Structures: A data structure is said to be linear if its elements form a sequence or a linear list.
	Examples: Array, Linked List, Stacks, Queues
	2. Non-Linear Data: A data structure is said to be Non-linear if its elements form a not sequence or non linear list.
	Operations on Linear and Non Linear Data Structures
	MISCELLANEOUS TOPICS:
	Polynomial as Array Representation

	UNIT-2.pdf (p.17-40)
	Algorithm for PUSH operation
	Algorithm for POP operation
	 An expression is defined as the combination of operands (variables, constants) and operators arranged as per the syntax of the language.
	 An expression can be represented using three different notations. They are infix, postfix and prefix notations:
	(Prefix: An arithmetic expression in which we fix (place) the arithmetic operator before (pre) its two operands. The prefix notation is called as polish notation.
	Example: + A B
	(Infix: An arithmetic expression in which we fix (place) the arithmetic operator in between the two operands.
	Example: A + B
	(Postfix: An arithmetic expression in which we fix (place) the arithmetic operator after (post) its two operands. The postfix notation is called as suffix notation OR reverse polish notation. Example: A B +
	Operator Precedence: When an expression consist different level of operators we follow it.
	We consider five binary operations: +, -, *, / and ^ (exponentiation). For these binary operations, the following in the order of precedence (highest to lowest): ^ , * , /, +, -
	Operator Associativity: When an expression consist more than same level precedence operators we follow it.
	Basically we have Left to Right associativity and Right to Left Associativity. Most of the operators are follows Left to Right but some of the operators are follow Right to left Associativity like Unary(+/-), ++/-- ,Logical negation (!), Pointer and a...
	Conversion of INFIX to POSTFIX:
	1. Initialize an empty stack
	2. Push “(“onto Stack, and add “)” to the end of Infix string.
	3. Scan the Infix string from left to right until end of the infix
	i. If the scanned character is “(“, pushed into the stack.
	ii. If the scanned character is “)”, pop the elements from the stack up to encountering the “(“, and add the popped elements to postfix string except parentheses.
	iii. If the scanned character is an operand, add it to the Postfix string.
	iv. If the scanned character is an Operator, compare the precedence of the character with the element on top of the stack. If top of Stack has lower precedence over the scanned character then push the operator into the stack else pop the element from ...
	Example: a * (b + c) *d)
	Operations performed on Queue:
	Algorithm for ENQUEUE operation
	Algorithm for DEQUEUE operation

	UNIT-3.pdf (p.41-74)
	UNIT-4.pdf (p.75-97)
	UNIT-5.pdf (p.98-119)

