FORMAL LANGUAGES & AUTOMATA THEORY

UNIT- |
FINITE AUTOMATA

1

FINITE AUTOMATA

After going through this chapter, you should be able to understand :

« Alphabets, Strings and Languages
o Mathematical Induction

e Finite Automata

« Equivalence of NFAand DFA

¢ NFAwith ¢ - moves

141 ALPHABETS, STRINGS & LANGUAGES
Alphabet

Analphabet, denoted by . ,isafinite and nonempty set of symbols.

Example:
1. If s is an alphabet containing all the 26 characters used in English language, then
5. is finite and nonempty set,and ¥ = {a, b,cy.... 2}

2. X ={0,1} isanalphabet.
3. Y ={1,2,3,.} 1is not an alphabet because it is infinite.
4. z ={} isnotan alphabetbecause itisempty.

String
A string is a finite sequence of symbols from some alphabet.

Example :

"xyz " isastring over an alphabet I = {a, b,c,...,z}. Theempty stringor null string is
denoted by .

1.2 FORMAL LANGUAGES AND AUTOMATATHEORY

Length of a string

The length of a string is the number of symbols inthat string. If w isa string then its length
isdenoted by | w|.

Example :

1. w=abed , then length of v is | w|= 4
2. n=o010 isastring,then|n|= 3
3. ¢ isthe empty string and has length zero.

The set of strings of length K (K > 1)

Let x beanalphabetand £ = {a, b}, thenall strings of length K (K > 1) isdenoted by y«.
X ={w:wisastring of lengthK, K > 1}

Example:

1. Z={ab},then
! ={a,b},
2% ={aa,ab, ba,bb},
*? = {aaa,aab,aba,abb baa, bab,bba,bbb}
| =Y = 2 = 2' (Number of strings of length one),
| 2% = 4 = 2% (Number of strings of length two), and
| 2% = 8 = 23 (Number of strings of length three)
2. §={0,1,2} ,then §* = {00,01,02,11, 10,12,22,20,21} ,and | §?|= 9 = 3

Concatenation of strings

If w, and w, are two strings then concatenation of w, with w, is a string and it is denoted by

wyw, . In other words, we can say that w, is followed by w, and | wyw,| = | wy| + | w,|.

FINITE AUTOMATA 1.3

Prefix of a string

A string obtained by removing zero or more trailing symbols is called prefix. For example, ifa
string w = abe ,then a,ab ,abc areprefixesof w.

Suffix of a string

A string obtained by removing zero or more leading symbols is called suffix. For example, ifa
string w = abc »then c,bc,abe aresuffixesof w.
Astring a is a proper prefix or suffix of a string w ifand only ifa+w.

Substrings of a string

A string obtained by removing a prefix and a suffix from string w is called substring of w . For
example, ifastring w = abc ,then p isasubstring of w. Every prefix and suffix of string w is
a substring of w , butnot every substring of w is a prefix or suffix of w. Forevery string w, both
w and ¢ are prefixes, suffixes, and substrings of w.

Substring of w = w — (one prefix)—(one suffix).

Language

A Language L over s, is a subset of 3', i e., it is a collection of strings over the
alphabet 5. ¢ ,and {} arelanguages. The language ¢ is undefined as similar to infinity and
{&} is similar to an empty box i.e. a language without any string.

Example:

1. L, ={01,0011,000111 } is a language over alphabet {0,1}
2. L, ={e,0,00,000 ,...} is a language over alphabet {0}
3. L, ={0"1"2" :n >1} isalanguage.

Kleene Closure of a Language

Let 7 bealanguage over somealphabet 5. . ThenKleene closure of 7, is denoted by 7, * and
itis also known as reflexive transitive closure, and defined as follows :

1.4 FORMAL LANGUAGES AND AUTOMATATHEORY

L* = {Set of all words over L}
= {word of length zero, words of length one, words of length two,}

=yucH=ruvruvru...
K=0

Example:

1. £ ={a,b} andalanguage y over ¥ . Then
L=rurluvulu...
r={g
L' ={a,b},
I* = {aa,ab,ba,bb} and so on.
So, L*={e,a,b,aa,ab,ba,bb...}
2. § = {0}, then S* = {€,0,00,000 ,0000 ,00000 ,....}

Positive Closure

If 3 isan alphabet then positive closure of 3, is denoted by s+ and defined as follows :

vt = %' - {& = {Set of all words over I excluding empty string €}
Example :
if £ = {0} ,then =* = {0,00,000 ,0000 ,00000 ,...}

1.2 MATHEMATICAL INDUCTION

Based on general observations specific truths can be identified by reasoning. This principle is
called mathematical induction. The proof by mathematical induction involves four steps.

Basis : Thisisthestarting point for aninduction. Here, prove that the resultis true forsomen=0or 1.
Induction Hypothesis : Here, assume that the result is true forn=k.
Induction step : Prove that the result is true for somen=k+ 1.

Proof of induction step : Actual proof.

FINITE AUTOMATA

Example : Prove the following series by principle of induction 1+2+3+

Solution :

Basis :
Letn=1

14

L.HS=landR.H.S = 3

So the result is true forn=1
Induction hypothesis :

By induction hypothesis we assume this result is true forn=k

_ k(k+1)

Le 14+243 4. ik >

Inductive step :

We have to prove that the result is true for ,, = f +1

e 1+2+43+..... +k+k+1=(k+l)(k++l)
Proof of induction step :

L.H.S =4+ 243+ s +k+k+1
LACLD I
:(k+])(§+l]
_(k+1) (k+2)
B 2
=(k+1)(2k+1'+1)=R.H.S

Hence the proof.

1.6 FORMAL LANGUAGES AND AUTOMATATHEORY

1.3 FINITE AUTOMATA (FA)

A finite automata consists of a finite memory called input tape, a finite - nonempty set of states, an
input alphabet, aread - only head , a transition function which defines the change of configuration,
an initial state, and a finite - non empty set of final states.

A model of finite automata is shown in figure 1.1.

v $

«— Input Tape

Tﬂ— Reading Head

Finite Control

FIGURE 1.1 : Model of Finite Automata

The input tape is divided into cells and each cell contains one symbol from the input alphabet.
The symbol 'y' is used at the leftmost cell and the symbol '$' is used at the rightmost cell to
indicate the beginning and end of the input tape. The head reads one symbol on the input tape
and finite control controls the next configuration. The head can read either from left - to - right or
right - to -left one cell at a time. The head can't write and can't move backward. So, FAcan't
remember its previous read symbols. This is the major limitation of FA.

Deterministic Finite Automata (DFA)

A deterministic finite automata M can be described by 5 -tuple (Q, Z, 3, q,, F) , where

1. Qis finite, nonempty set of states,

2. 3 isaninputalphabet,

3, & istransition function whichmaps Q xZ — Q i.e. the head reads a symbol in its present
state and moves into next state,

4. q, €Q,knownasinitial state

5. FcQ,knownas setof final states.

FINITE AUTOMATA

1.7

Non - deterministic Finite Automata (NFA)

A non - deterministic finite automata M can be described by 5 - tuple (Q, £, 8, q,, F),where

1

2.
3.

5.

Q is finite, nonempty set of states,

¥ isaninput alphabet,

§ is transition function whichmaps Q x = — 2° i.e., the head reads a symbol in its present
state and moves into the set of next state (s) . 2@ is power setof Q,

q, € Q, known as initial state , and

F ¢ Q, known as set of final states.

The difference between a DFA and a NFA is only in transition function. In DFA, transition
function maps on at most one state and in NFA transition function maps on at least one state for
avalid input symbol.

States of the FA

FA has following states :

Initial state : Initial state is an unique state ; from this state the processing starts.

Final states : These are special states in which if execution of input string is ended then
execution is known as successful otherwise unsuccessful.

Non - final states : All states except final states are known as non - final states.

Hang - states : These are the states, which are not included into Q, and after reaching these
states FA sits in idle situation. These have no outgoing edge. These states are generally

denoted by ¢ . For example, consider a FA shown in figure1.2.

FIGURE 1.2 : Finite Automata

g, istheinitial state, q,, q, are final states, and ¢ is the hang state.

1.8 FORMAL LANGUAGES AND AUTOMATATHEORY

Notations used for representing FA

We represent a FA by describing all the five - terms (Q, I, §, q,, F). By using diagram to

represent FA make things much clearer and readable. We use following notations for representing
the FA:

1. Theinitial state is represented by a state within a circle and an arrow entering into circle as

shown below :
(Initial state g,)

2. Final state is represented by final state within double circles :

3. Thehang state is represented by the symbol '¢' within a circle as follows :

4. Other states are represented by the state name within a circle.
A directed edge with label shows the transition (or move). Suppose p is the present state
and q is the next state on input - symbol 'a', then this is represented by

(Final state g,)

wn

6. A directed edge with more than one label shows the transitions (or moves). Suppose pis the
present state and q is the next state on input - symbols 'a,’ or 'a," or...or ‘a,’' thenthisis

represented by @ —_— 0

Transition Functions
We have two types of transition functions depending on the number of arguments.

Transition Function

Direct Indirect
(Represented by §) (Represented by §')

Direct transition Function (3)

When the input is a symbol, transition function is known as direct transition fumction.

FINITE AUTOMATA 1.9

Example : §(p,a) = q (Where pis present state and q is the next state).
Itis also known as one step transition.

Indirect transition function (5')
When the input is a string, then transition function is known as indirect transition function.

Example : &'(p,w)=gq, where p is the present state and q is the next state after | w |

transitions. It is also known as one step or more than one step transition.
Properties of Transition Functions

1. Ifé(p,a)=q,then § (p, ax) =8(q, x) andif &' (p, x) = q,then &' (p, xa) =8'(q, a)
2. Fortwostringsxandy; 6(p,xy) =6(5(p,x),y) ,and 8'(p,xy) =6'(6'(p,x),»)
Example :1. ADFA M = ({¢,.9,,9,:9 }.{0,1},8,9,.{q ;/}) isshownin figurel.3.

DO

oWli»o

0
FIGURE 1.3 : Deterministic finite automata

Where g 1s defined as follows :
' 0 1
= O G4 q,
a, 9 q
9, s Y
G d, g

2. ANFAM, =({94.9,.92.9 ;},{0,1},8.90.{q ;}) isshownin figurel 4.

0,1

FIGURE 1.4 : Non - deterministic finite automata

1.10 : FORMAL LANGUAGES AND AUTOMATATHEORY

Transition function § is defined as follows :

0 1
-0, { ds G} {a%}
q - {a,}
92 . - {a}
q; - {a}

Note : In first row of transition table, when present state is q, and input is '0', then there are
two next states q, ,and q,.

Acceptability of a string by DFA : LetaDFAM=(Q, %, §, q,, F) and aninput string
w e T *. The string w is accepted by M if and only if (q,, W) = q;, where g, eF .

When w is accepted by M, then the execution of string w ends in a final state and this execution
is known as successful otherwise unsuccessful .
Example : Considerthe DFAshownin figurel.5.

0

FIGURE 1.5 : Deterministic finite automata
Input strings are :
i) 01,
ii) 011
Check the acceptability of each string.
Solution :
1. Lettheinputstring w, = 01, the transition sequence is as follows :

Si

Execution ends in final state ¢, , hence string "01" is accepted.
2. Letinputstring w, =011

FINITE AUTOMATA 1.11

The transition sequence is as follows :

(&) i))4

Execution ends in non - final state g, , hence string "011" is not accepted.

Acceptability of a string by NFA

LetaNFA M =(Q, T, 8, q,, F) andan inputstring w € £ *. The string wis accepted by M if
and onlyif 8(g,, w) = {g,; g, € F,forsomei=0,1,....... ,n}.
When w is accepted by M, then the execution of string w ends in some final state and the
execution is known as successful otherwise unsuccessful .
Example : Consider the NFA shown in figure1.6.
Check the acceptability of following strings : i) 011 1i) 010 iii) 011011

0,1

C 2

FIGURE 1.6 : Non - deterministic finite automata

Solution :

1. Transition sequence for the string "011" is as follows :

N O O O
Starta i
(o)

One execution sequence ends in final state ¢, , hence string "011"is accepted.
2. Transition sequence for the string "010" is as follows :

The execution ends innon - final states g,, ¢,and oneendsin ¢ , hence string "010" isnot accepted.

1.12 FORMAL LANGUAGES AND AUTOMATATHEORY

3. Transition sequence for the string "011011" is as follows :

One execution ends in hang state ¢ , second ends in non - final state g, , and third ends in final

state ¢, hence string "011011" is accepted by third execution.

Difference between DFA and NFA
Strictly speaking the difference between DFA and NFA lies only in the definition of § . Using this
difference some more points can be derived and can be written as shown :

DFA NFA
1. The DFAis 5 - tuple or quintuple The NFA is same as DFA except in the
M =(0Q,%,8,q,,F) where definition of §. Here, § is defined as follows :
Q is set of finite states 5:0x (X Ue) tosubset of ¢
¥ is set of input alphabets
8:0OxZto @

g, istheinitial state
Fc Q issetof final states

2. There can be zero or one transition There can be zero, one or more transitions

from a state on an input symbol from a state on an input symbol

3. No - transitionsexisti.e., there < — transitions can exist i. e., without any input
should not be any transition or a there can be transition from one state to
transition if exist it should be onan another state.
input symbol

4. Difficult to construct Easy to construct

FINITE AUTOMATA 1.13

Example 1 : Consider the FA shown in below figure. Check the acceptability of following strings:
(a) 0101 (b) 0111 (c) 001

OHl» O

FIGURE : Finite automata
Solution : (a) The transition sequence for input string 0111 is following :
(O — ()~
Execution ends in final state A, hence string 0101 is accepted.

(b) The transition sequence for input string 0111 is as follows :

RO 000
Execution ends in non-final state C, hence string 0111 is not accepted.

(c) The transition sequence for input string 001 is as follows :

—(D=(B(O2
Execution ends in non-final state D, hence string 001 is not accepted

Example 2: LetaDFA M =(Q,Z,5,9,,F) isshownin below figure.

FIGURE:DFA

1.14 FORMAL LANGUAGES AND AUTOMATATHEORY

Check that string 33150 is recognized by above DFA ornot 7

Solution :

For string 33150 the transition sequence is as follows :
O Omn OO O ©

Since, transition ends in final state, g, , so string 33150 is recognized.

Example 3 : Consider below transition diagram and verify whether the following strings will be
accepted or not ? Explain.

0
=L I
B
FIGURE : Given Transition Diagram

i)y 0011 i) 010101 iii) 111100 iv) 1011101 .

Solution : Transition table for the given diagram is,

0 1
- q, g,
q, 9 g,
a0 2 q,
9 9 9

TABLE : Transition Table for the given Transition Diagram

FINITE AUTOMATA 1.15

i) 0011 ii) 010101
6(gq,,0011)|-6(q,,011) 6(q,,010101) |-5(q,.10101)
| =6(q0,11) | -6(q,,0101)
|-0(q5,1) | -8(g,,101)
| =40 | —6(g,.,01)
- 0011 is accepted. | ~8(q;,1)
| -4,
010101 is not accepted.
iii) 111100 iv) 1011101
6(g,,111100) | - &(gq4,11100) 8(g,,1011101) |-6(g,,011101)
| — (gqq,1100) |-6(gq,,11101)
|-6(q3,100) |-6(q,,1101)
| —6(g,,00) | -6(g,,101)
| ~6(q;,0) | -8(g,,01)
=40 |-6(qo,1)
-, 111100 is accepted. | -qs
- 1011101 is not accepted.

Example 4 : Consider the NFA shown in below figure. Check the acceptability of following string

scanf ("%d", &num) ;

Note : Letter stands for any symbol from { a, b, , z } and digit stands for any digit
from{0,1,2, 9}.

1.16 FORMAL LANGUAGES AND AUTOMATATHEORY

Solution : The transition sequence for given string: scanf("' %d", & num) ;

Since, execution of given string ends in final state ¢, , so the string is recognized.

Example 5 : Obtain a DFAto accept strings of a's and b's starting with the string ab .

Solution :
From the problem it is clear that the string should start with ab and so, the minimum string that can
be accepted by the machine is ab. To accept the string ab, we need three states and the machine

can be written as "
(1w

where g, is the final or accepting state. In state ¢, , if the input symbol is b, the machine should
reject b (note the string should start with a) . So, in state ¢, , on input b, we enter info the
rejecting state ¢, . The machine for this can be of the form

(a—-(a)

b

The machine will be in state g, , if the first input symbol is a. If this a is followed by another a, the
string aa should be rejected by the machine . So, in state g, , if the input symbol is a , we reject
itand enter into ¢, which is the rejecting state. The machine for this can be of the form

FINITE AUTOMATA 1.17

Whenever the string is not starting with ab, the machine will be in state g, which is the rejecting
state. So, in state g, , if the input string consists of a's and b's of any length, the entire string can
be rejected and can stay in state g, only. The resulting machine can be of the form

The machine will be in state g, , if the input string starts with ab. After the string ab, the string
containing any combination of a's and b's, can be accepted and so remain in state ¢, only. The
complete machine to accept the strings of a's and b's starting with the string ab is shown in below
figure. The state g, is called dead state or trap state or rejecting state.

FIGURE : Transition diagram to accept stringab (a + b)*

So, the DFA which accepts strings of a's and b's starting with the string ab is given
by M = (Qaznaaq[)&F)

where 0={q,, 4,, 4,}; T={a,b};
g, 1s the start state ; F={q,}
5 is shown the transition table.
' «— X >
F a b
T —aq a 4
8 % % 9,
> . @
A2 4

TABLE : Transition table for DFA shown in above figure

1.18 FORMAL LANGUAGES AND AUTOMATATHEORY

To accept the string abab : This string is accepted by the machine and is evident from the
below figure.

a b a b
9 q, \ 9, q, 9
[accepting state |
FIGURE : To accept the string abab

Here, 5 *(q,, abab) = g, whichis the final state. So, the string abab is accepted by the machine.

To reject the string aabb : The string is rejected by the machine and is evident from the
below figure .

a a b b
4o q, \ a as ds
[non - accepting state]
FIGURE : Toreject the string aabb

Here, & * (q,,aabb)= q, whichisnotan accepting state. So, the string aabb isrejected by the
machine.

Example 6 : Draw a DFA to accept string of 0's and 1's ending with the string 011.
Solution :

The minimum string that can be accepted by the machine is 011. It requires four states with g, as
the start state and ¢, as the final state as shown below.

) 1 1
— w2 —@
Instate g, , suppose we input the string 1111 011. Since the string ends with 011, the entire
string has to be accepted by the machine. To accept the string 011 finally, the machine should be

instate g, . So, on any number of 1's the machine stays only in state g, andifthe string ends with
011, the machine enters into the final state. The machine can be of the form

_ AL
OO O @

FINITE AUTOMATA 1.19

If the machine is in any of the states 4:» 4, and g, and if the current input symbol is 0 and if the
nextinput string is 11, the entire string should be accepted. This is because the string ends with
011. So, from all these states on the input symbol 0, there should be a transition to state q, SO

that if we enter the string 11 we can reach the final state. Now the machine can take the form as
shown below.

Instate g, if the input symbol is 1, enter into state g, sothatifthe next input string is 011, we can

enter into the final state g, . So, the final machine which accepts a string of 0's and 1's ending with
the string 011 can take the following form.

FIGURE : transition diagram to accept (0+1) *011
So, the DFA which accepts strings of 0's and 1's ending with the string 011 is given by

M =(Q.X,6,9,,F) where
2={4,, 9., 9 gs }3 Z=A0, 1};
g, is the start state ; F ={q5};
& is shown using the transition table.

— X =
0 1
T g a, "
E q, q, q,
R
197} q, q; q;
J' ql QO

TABLE : Transition table for the machine shown in above figure

1.20 FORMAL LANGUAGES AND AUTOMATATHEORY

To accept the string 0011 : This string is accepted by the machine and is evident from the below
figure . Here, &*(g,,0011)= ¢, which is the final state. So, the string 0011 is accepted by the
machine.

0 0 1 1
9o q, q, q, e
[accepting state |

FIGURE : To accept the string 0011

To reject the string 0101 : The string is rejected by the machine and is evident from the

below figure .
0 1 /0 \ 1 \
Q‘O QI QI q2
[non - accepting state]

4,

FIGURE : To reject the string 0101
Here, & *(g,,0101)= g, which is not an accepting state. So, the string 0101 is rejected by the
machine.

Example 7 : Obtain a DFA to accept strings of a's and b's having a substring aa .

Solution :
The minimum string that can be accepted by the machine is aa. To accept exactly two symbols,
the DFA requires 3 states and the machine to accept the string aa can take the form

where g, is the start state and g, is the accepting state. In state g, , if the input symbol is b, stay

in g, so that when any number of b's ends with aa, the entire string is accepted. The machine for
this can be of the form

FINITE AUTOMATA 1.21

N |

There is a transition to state ¢, oninput symbol a. In state ¢, , if the input symbol is b, there will

be atransition to state g, so that if this b is followed by aa, the machine enters into state g, so
that the entire string is accepted by the machine. The transition diagram for this can be of the form

The machine enters into state ¢, when the string has a sub string aa. So, in this state even if we
input any number of a's and b's the entire string has to be accepted. So, the machine should stay
in g, . The final machine which accepts strings of a's and b's having a sub string aa is shown in
below figure

FIGURE : transition diagram to accept (a+b)* aa(a+b)*

The machine M = (Q,%,8,q,,F) where

0=1{49,,49, }> L={a b}
g, isthestartstate; F={q,}
& is shown using the transition table.

«— X >

S a b

T g @ 9o

4 g, 9, 90

3 & 49
N

TABLE : Transition table for the machine shown in above figure

1.22 FORMAL LANGUAGES AND AUTOMATATHEORY

To accept the string baab : This string is accepted by the machine and is evident from the
below figure.

b a a b |
o 9o 4 q, q,
[accepting state]

FIGURE : To accept the string baab
Here, & * (g,,baab)= q, whichisthe final state. So, the string baab is accepted by the machine.
The string baba is rejected by the machine and is evident from the below figure. '

b a b a
‘?O qﬂ ql qﬂ ql
[non -accepting state]

FIGURE : To reject the string baba

Here, 6 * (q,, baba) = q, which is not an accepting state. So, the string baba is rejected by the
machine.

Example 8 : Obtain a DFA to accept strings of a's and b's except those containing the
substring aab. :

Solution :

Note : This can be solved in two ways. The first method is similar to the previous problemi. e.,

draw a DFA to accept strings of a's and b's having a substring aab. Then change the final states

to non - final states and non final states to final states. The resulting machine will accept the

strings of a's and b's except those containing the sub - string aab.

Here, the second method is explained. The minimum string that can be rejected by the machine
is aab. To reject this string we need four states g,, ¢,,¢, and g, . Since the string aab has to be

rejected, ¢, can not be the final state and the rest of the states will be the final states as shown
below.

FINITE AUTOMATA 1.23

@@

The machine enters into ¢, ifthe string has a sub string aab. In this state if we input any number
ofa'sor/and b's, the entire string has to be rejected. So, stay in the state g, only. The machine

for this is shown below. _ l X
a,
@-@—@) >

In state g, , if the input symbol is b, stay in g, sothatifthis bis followed by aab, the machine
enters into state g, so that the string is rejected. The machine for this is shown below.

Instate g,, if the input symbol is b, enter into state g, - so that if this b ends with the string aab,
the entire string is rejected. The machine for this is shown below.

The machine will be in state g, if the string ends with aa. At this stage, ifthe input symbolisa,

again the string ends with aa and so stay in state g, only. The complete machine to accept strings
of a's and b's except those containing the sub string aab is shown below,

FIGURE : DFA to accept the string except the sub string aab.

So,the DFA M =(0,%,5,q,,F) where
0={90 99 9; } 5 L={ab}

1.24 FORMAL LANGUAGES AND AUTOMATATHEORY

g, isthestartstate; F ={q¢,91,9,}
& is shown using the transition table

«— X =

) a b
0 @) a9 9o
8)
& 9 9
\’ UE] g3 qs

TABLE : Transition table

Example 9 : Obtain a DFA to accept strings of a's and b's having exactly one a, atleast one a,
not more than three a's.

Solution :
To accept exactly one a : To accept exactly one a, we need two states g, and g, and make

g, as the final state. The machine to accept one a is shown below.

In g, , on input symbol b, remain g, only so thatany number of b's can end with one a. The
machine for this can be of the form

Instate g, ,on input symbol bremainin g, and the machine can take the form

&

But, instate g, , ifthe input symbol is a, the string has to be rejected as the machine can have any
number of b's but exactly one a. So, the string has to be rejected and we enter into a trap state
g, . Once the machine enters into trap state, there is no way to come out of the state and the
string is rejected by the machine. The complete machine is shown in below figure.

FINITE AUTOMATA 1.25

‘b b a,b
—>H—*‘ @)

FIGURE : DFA to accept exactly one a

The machine M =(Q,Z,8,q9,,F) where

0={40:949:}> LI={a b}
g, is the start state; F={q}
& is shown below using the transition table .

«— X >
S a b
T — 9, q, 9o
a q, q,
s
N 4, 9, q,
!

TABLE : Transition table

The machine to acceptatleastone a : The minimum string that can be accepted by the
machine is a. For this, we need two states g, and g, where g, is the final state. The machine for

this is shown below. . a O

In state g, ,if the input symbol is b, remain in g, . Once the final state g, isreached, whether the
input symbol is a or b, the entire string has to be accepted. The machine to accept at leastonea

is shown in below figure. I b ’ a,b
(1))

FIGURE : DFA to atleatone a

1.26 FORMAL LANGUAGES AND AUTOMATATHEORY

The machine M = (Q,%,8,q,, F) where

O={q0:0} 3 L={a, b}
g, isthe start state ; F ={q,}
& is shown using the transition table .

«— X
o a b
_>90 QI qO

q, U8

TABLE : Transition table

The machine to accept not more than three a's : The machine should accept not
more than three a's means

[t can accept zero a'si.e.,noa's

It can accept one a

It can accept two a's

It can accept 3 a's

But, it can not accept more than three a's.

In this machine maximum of three a's can be accepted i. ., the machine can accept zero a's, one
a, two a's or three a's. So, we need maximum four states g,, g,, g, and g, where all these states

are final states and g, isthe start state. The machine can take the form

Instate g, , if the input symbol is a, the string has to be rejected and we enter into a trap state g, .
Once this trap state is reached, whether the input symbol is a or b, the entire string has to be
rejected and remain in state g, . Now, the machine can take the form as shown below.

FINITE AUTOMATA 1.27

Instate g, g, g, and g,, if the input symbol is b, stay in their respective states and the final
transition diagram is shown in below figure.

FIGURE : DFA to accept not more than 3 a's
The DFA M = (Q,%,8,q,,F) where

O={q0:91> 92> 935 Q4 } 5 Z={a b}
g, is the start state ; F={qy, ¢,9,9}
& is shown using the transition table .

« -

8 a b
g, 90
4, 4
4% @
g, a3
9 4, 4,

TABLE : Transition table for DFA shown in above figure

Example 10 : Obtain a DFAto accept the language L = { awa | w e(a +b)*}.

Solution :

Here, w e(a + b) * indicates the string consisting of a's and b's of any length including the null
string. So, the language accepted by DFA is a string which starts with a, followed by a string of
a'sand b's (possibly including ¢) of any length and followed by one a.

If wis e (null string), the minimum string that can be accepted by the machine is aaand so, we
need three states g ,q, and g, to accept the string. The machine can be of the form

1.28 FORMAL LANGUAGES AND AUTOMATATHECRY

where g, is the start state and g, is the final state. Instate g, , if the input symbol is b, the string

has to be rejected and so, we enter into a trap state g,. Once the machine enters into trap state,
whether the input is either a or b, the string has to be rejected and the machine for this is shown

below .

Instate g, ,if the input symbol is a, the string ends with a and so remainin g, . Instate g, if the
input symbol is b, enter into state ¢, so that after inputting the symbol a, the machine enters into

g, - The complete machine is shown in below figure.

FIGURE : DFA to accept awa

So, the machine M = (Q,X,8,9,,F) where Q= {¢,.4,,9,-9;} ; Z=1{a,b}

g, isthe start state ; F = {q,}

FINITE AUTOMATA 1.29

§ is shown using the transition table .

“— X >

) a b
>4, 9, qs
. q 92 g,
@ q> 4
g3 q; K

TABLE : Transition table for DFA shown in above figure

Example 11 : Obtain a DFA to accept even number of a's, odd number of a's .

Solution :
The machine to accept even number of a's is shown in figure (a) and odd number of a's is shown
in figure(b). 4 _ i
@< > (W)
a a
Figure : (a) Figure : (b)

Example 12 : Obtain a DFA to accept strings of a's and b's having even number of a's and b's.

Solution :
The machine to accept even number of a's and b's is shown in figure 1.

FIGURE 1 : DFA to accept even no. of a's and b's
Note : In the DFA shown in figure 1, instead of making g, as the final state, make ¢, asthe final
state. The DFA to accept even number of a's and odd number of b's is obtained and is shown in
figure 2.

1.30 FORMAL LANGUAGES AND AUTOMATATHEORY

FIGURE 2 : DFA to accept even no. of a's and odd number of b's

Note : In the DFA shown in figure 1, instead of making g, as the final state, make ¢, as the final
state. The DFA to accept odd number of a's and even number of b's is obtained and is shown in

figure 3.

Y _
FIGURE 3 : DFA to accept odd no. of a's and even number of b's

Note : Inthe DFA shown in figure 1, instead of making g, as the final state, make g, as the final
state. The DFA to accept odd number of a's and odd number of b's is obtained and is shown in

figure 4.

FIGURE 4 : DFA to accept odd no. of a's and odd number of b's

FINITE AUTOMATA 1.31

Example 13 : Design a DFA, M that accepts the language L(M) = {w|we{a, b} } andw
does not contain 3 consecutive b's.

Solution :
We first consider a language L (M) ={ w|we {a, b}"} and w contain 3 consecutive b's.

Then DFA for I, is,

FIGURE : (A)
Now we can get language L(M) by converting non - final states to final states and final states to
non - final states.

FIGURE : (B)
FIGURE : Construction of DFA from the language L = { wlwe{a, b}"}

Example 14 : Design DFA which accepts language L = { 0, 000, 00000, } over{0}.

Solution : L= {0,000, 00000, } over { 0 } means L accepts the strings of odd number
of 0's. So the DFA for Lis,

FIGURE : DFA for the given language L.

1.32 FORMAL LANGUAGES AND AUTOMATATHEORY

Example 15 : Obtain an NFA to accept the following language L = { wiw € abab" or aba"
where n >0 }
~ Solution : The machine to accept gpqp” Where n =0 is shown below :

b

The machine to accept 4p,” Where n =0 is shown below :

The machine to accept either gpqp" OF gpg" Where n >0 is shown below :

Example 16 : Design NFA to accept strings with a's and b's such that the string end with 'aa’.
Solution :

Method - | : The simple FA which accepts a string with 'aa’ is
—(—(—®

Now there can be a situation where in

Anything a a

eitheraorb

FINITE AUTOMATA

1.33

Hence we can design a required NFA as

It can be denoted by ,

M =({4 9 0.} 8 {9}, {4:})
We can test some strings for above drawn NFA.

Consider
8(gp,aaa) |- d(q,, aa)
- 8 (q,, a)
| —0(q,.€)

1. e. we reach to final state.
8(9’0’ aaa) gﬁ 8(6]0, aa)
- 8 (q,, a)

. | - & (q1-€)
i.e. we are not in final state.

Thus there are two possibilities by which we move with string 'aaa’ in above given NFA.

Method - I

Start with two consecutive a's initially. It requires three states g, ¢, and g, respectively. Consider

g, astheinitial state

~@—~O—®

Assign g, as final state so that it accepts two consecutive a's

1. 34 FORMAL LANGUAGES AND AUTOMATATHEORY

Design such a way if any number of b's preceeds firsta it should be in the same state i.e., in the
state g, .

Design such a way if a's preceed by first a it should move from g, to g, onlyi. e., it willbe in
the state.

The transition table is
a b
o {90, 4,} o
4, R ¢
g 9, 9

Test for the strings which ends with two consecutive a's.

String baa : , String baa :

6(q4,baa) |-6(q0,aa) 5(qq,baa) |—6(gq,9a)
{-6(q,a) |-6(qo,a)
|—6(q2,€) | -6(gy,€)
|—g,€F |—g,¢ F

NFA and two possibilities for the same input also shown.

FINITE AUTOMATA 1.35

String aab :

6(qg,aab) | -36(q,,ab)
|—6(q,,b)
|-36(q,,€)
|~q.¢F

If the string is not ending with two consecutive a's it will not be accepted.
String aaa :
9(qq,aaa) |-5(qq,aa)
-6(q,,a)

|_é‘(g2:€)
|-q,€eF

Example 17 : Design an NFA to accept a language of all strings with double 'a' followed by
double 'b'.

Solution : First design an NFA with three states 40> 4, 9, and in which g, is the initial state to
accept the string with two a's.

—(©)-(~®
In second step we have to add another two states for the following two b's as shown below.
Those states are ¢, and ¢,

1.36 FORMAL LANGUAGES AND AUTOMATATHEORY

It can accept any number of a's or b's before first two successive a's. In the same way after the
two successive b's also it can accept any number of a'sor b's.

The NFA is defined as below :

M=(Q, 2-“aanqo»F)

where Q={9091:92: 9394 } 5 L={a,b}
F ={ q, } and the transition table is given below :

a : b
- q, { 900, } 4o
g, % ¢
9, ¢ 4
g, 0 4.
4, 4,

Consider the string aaa bb :

8(q,, aaa bb) |- 8(g,,aa bb)

|- 8(g,,a bb)

|- 8(g,, bb)

- 8(g;, b)

- 8(q,, €)

- g, € F

aaa bb € L(M)

Example 18 : Design an NFA to accept strings with 0's and 1's such that string contains two
consecutive 0's or two consecutive 1's.

Solution : First we design NFA to accept two consecutive 0's . This

FINITE AUTOMATA

1.37

RO CanO

Next we can have any number of 0's and 1's before and after two consecutive zeros. ie.,

0,1 0,1

then similarly NFA for accepting two consecutive 1'sis

0,1

0,1
AN
BB

Combining above two designs

Transition table is
S 0 1
—>q, {90:91} {90.93}
q, 9, ¢
% %
B o g,

q, q,

1.38 FORMAL LANGUAGES AND AUTOMATATHEORY

Checking 10100 string with NFA.
‘101 9o b %l do g Yo 9 - Jo
NN N A A
94 o %G 9 9
X X X &\ ,

Q@

Observing above graph there are three completed paths for the string 10100. They are

9 99" 9" %° %
Qol%gqolqog%g%
%' 9%°%" 9" 9"

In all these three couple paths one path is ending with final state (g, or g,). So, the string 10100
is accepted (It contains two consecutive 0's).

Now considering another stirng 1010, then graph becomes
g —— oy 2 g — e gy
NN N A
% @« @
X X '

There are two completed paths. But no path is ending with final state (g, or g,). So, the string
- 1010 is not accepted (because it does n't contain two consecutive 0's or 1's).

X

1.3 EQUIVALENCE OF NFA AND DFA

As we have discussed in comparison of NFA and DFA that the power of NFA and DFA is equal.
It means that if a NFA M, accepts language L, then some DFA M, also accepts it and
vice - versa.

In this section, we will discuss about the equivalence of NFA and DFA. It is obvious that all DFA
are NFA from NFA definition. We will see this in the following theorem.

FINITE AUTOMATA 1.39

Theorem 1.3 .1 : All DFA are NFA.
Proof : While discussing the proof, we will concentrate on two things :

1. How to construct the target NFA ? And
2. The acceptability should be same for both.

Step 1 : Construction of the target NFA from given DFA

Let M=(Q,3, 8,q,, F) bethe given DFAand M,=(Q,, %, §,, s, F;) be the target NFA,
then
1. O, = O (States of DFA are same for NFA),
2. v issame for both,
3. 8, =8, itmeans, whatever transition function given for DFA M is same for the target

NFA M,.

We also see that
For DFAM : Transition function is definedas Qx X — Q,and

ForNFA M, : Transition functionis definedas 9, x2 — 2

So, (0xZ— Q)= (@,xZ—>2%) or 92
4. s=gq, (Same starting point or initial state)
5. E=F (Same terminating points or final states)

Step 2 : The acceptability of DFAand NFA: Let w be an input string and accepted by DFA

Mand weX' if and only if 8' (g5, W)=4,,9, € F (§ is indirect transition function)

For equivalent NFA M,

3 (s, w) =8'(q,,w)=q;,9, €F
(By construction definition 8, =3, s =g,, F; = F and &', isindirect transition function for NFA).
Thus, NFA M, also accepts w.

1.40 FORMAL LANGUAGES AND AUTOMATATHEORY

It means, L(M,) < L(M) €))
Now, let w is accepted by NFA M, if and only if &', (s, w) = &', (9,,W)=4,.4, €F, and by '
construction definition 5, = 8, s=g,, F,= F and &', isindirect transition function for NFA.

So, for DFA M 8'(q,, W) =q,.q9, €F (§'is indirect transition function)

Thus, DFA M also accepts w.
Hence, M(L) c L(M,) (2)
Therefore, all DFA are NFA. (From (1) and (2))

Example : LetaDFA M =(Q, %, 8, q,, ') as shown in below figure . Find an equivalent NFA.

FIGURE:DFA

Solution :

LetequivalentNFA M, =(0, ,2,5,,q0,F1) where 0, ={90,91:92-93 =Q4}32:{aab})
F ={q,, q,}> 8, isdefined below.

a b
= 4y 4, q;
‘h qs -
a9 - 4,
s 9
q, 4,

FINITE AUTOMATA 1.41

Theorem 1.3.2 : If there is a NFA M, then there exists equivalence DFA M, that has
equal string recognizing power.

Proof : While discussing the proof, we will concentrate on two things :
1. How to construct the equivalent DFA ? And
2. The acceptability should be same for both.

~ Step1 : Construction of the equivalent DFA u, from given NFA M

Tn NFA, zero, one or more next states are possible on a particular input. When we have more
than one next state then we group all next states intoone as [¢,, ¢,, g, | and we call it one next
state for equivalent DFA.

Let M =(0,=,8,q,,F) bethegivenNFAand M, =(Q,, Z,3,, s, F)) be the equivalent DFA,
then

1. 9 c2° (2 is the power set of the set Q.),

2. ¥ issame for both,

3. s=[g,] isinitial state for M,,

4. F c 29 suchthateach member of F; hasatleast one final state from F.
5. 8, is constructed as follows:

Let w=a e X and

If for given NFA M : 8(q,, a) ={ 4, G55 -overeeeems q,}»then
Forequivalent DFA M, : 8,([g,], @) =[q1> qo» weovevereee q,1
And

If for NFA M : 8({q,, Gos-weesn } 5 @)= {G15 T2 s G § ,then
For equivalent DFA M, : 8,([¢,» @55 s 4, 1,8) =415 @25 5 G]

Note: [g,, g, ..., g,] denotes asinglestate for equivalent DFA.

1.42 FORMAL LANGUAGES AND AUTOMATATHEORY

Step 2 : The acceptability of DFA and NFA

We use the mathematical induction method to prove that L(M) c L(M,) and L(M,) ¢ L(M)
for all input strings w e "

Case1 :Let |w|=0,itmeans, w=€ (Null string)
Let wis accepted by NFAM if and only if
5(gs,€)= 4y »and g, F (Startingstate s final state).
So, the initial state of DFA will be the final state, hence w=e¢ is accepted by DFA also.

Case 2 : Let| w|=1and w=aeX is accepted by NFA M, then for NFA
M :8(qy, @)= {qy> Gas-es @y }> 804 {G)5 G5 eens Gy } has at least one final state, then by
constructive proof of equivalent DFA A, :

8,(g, @) =[d1> Gase-es 90 | and [g,, g,,---» g,] hasatleastone final state, SO [q,, gyse-es G, |
is a final state for equivalent DFA M, .

Therefore, the equivalent DFA M, also accepts w=a.

Case 3 : Suppose|w|=nand w =a,a,... a, isacceptedbybothMand M, and
For NFA M : 8'(qo»a,a2.-8y) = {41582 >3 n} » @D
For equivalent DFA M,: &' = ([q,), @,@;..-a,) =[§15935 > 9]

Case4:Lletjw|=n+landw=yb

Where |y| =n,y =a,4a,...a, and y,b X' isaccepted by NFAM If and only if
For NFA M:8' (y, @@y @, 5)=8 ({qys0zseeees Gm}s) = {d1s@ase> Dp}s
({9,9,»---»4,} hasatleastone final state from the setF).
By constructive proof of equivalent DFA. M,
8" (14,), @@y @, 0)=8, ([21:8550s 40)s) =[915T2>05 g,
[4,:4,,-» q,] contains one final state from F, thus it is a final state for equivalent DFA M,.

Therefore, M, also accepts the string w=yb.

FINITE AUTOMATA 1.43

(8', &', are indirect transition functions for NFAM and DFA M, respectively.)

It has been proved that if NFA M accepts w then DFA M, also accepts w for any arbitrary
string w.
Thus, L(M,) c L(M). (1)

Similarly, we can prove that if equivalent DFA M, accepts any string w e =", then NFA also
accepts it.

Thus, M(L) c L(M,).)
Hence, the statement of Theorem 1.3.2 is true. (From (1) and (2))

Example 1 : Considera NFA shown in below figure. Find equivalent DFA.

FIGURE : Non - deterministic finite Automata

Solution : Let given NFA M=(Q,%, 38, q,, F) and equivalent DFA
Ml = (Q1,Z,51=[qo]:F1) 2 Where Q = {90 =q19q2 ,q_f},2={a,b}, S iS Stal‘ting State,
F={q,},and § is defined as follows :

q, b
- qo {90-91} {a0}
g, - {q,}
g, - {q,}

8, is defined as follows :

1.44 FORMAL LANGUAGES AND AUTOMATATHEORY

1. Keep the first row of NFA as it is with square bracket as follows :
| a b

[QO JQI] [QU]

[a,]

2. Now, we have two states : [g,}[g,.4,]1- We select the one next state that is not a present

state il now and define the transition for it. We have only one next state [go,q,], whichis not

a present state .
I a b
—{g] [90-91] [40]
[QD 5q1] [% sqll [qO qu]

Since, 51([qo,q]],a)=[§(q0,a)Q5(q1,a)]=[{q0 411V 9] ={g0-01] ,and
5,(90,9:1:0)=[8(q0,0)08(q,,0)1=[{g0} {49, }1=1d0592] |

3. Now [g,.,4,] is the next selected state, because [4o.; 1is defined already

a b
-] [90:41] [40]
(90,411 [90-a1] (40921
(90:4:] (90,911 [90-9/]

4. Now, the state [go,9,] is the next selected state.

a b
) [90-91] [90]
[90:4] (40,411 (90,921
9022 (0> [90-9,]
(90541 [90-41] Lg.]

5. Now, we have no new choice of the next state to be considered as present state. This is the
completion of transition table. We have

0,={1201.[40-¢11[96-321[40-a, 1,} (All selected states in transition),

FINITE AUTOMATA 1.45

and F;={[q,,9 ; I} (Only one final state)

FIGURE : Transition Diagram of equivalent DFA

We see one thing here that not all states of @ are selected for transition. We have selected those
states, which are reachable from the initial state only and other remaining states of 2¢ are neglected.

So, finally we conclude that only those states of ¢ are considered in transitions, which are
reachable from the initial state.

Example 2 : Construct equivalent DFAfor NFAM =({p,q,r,s}, {0, 1}, 3, p,{q, s}), where
§ is given below .

0 1

P {a,s} {q}

9 (o) (an
r S q,r
&® - {p}

Solution : Let equivalent DFAis M, and M, =(Q, L, 8, [p], F)

Construction of Transition table for equivalent DFA

0 1
—[p] [g. 5] [4]

[q] [r] [q.7]
[g, s] [r] [p.g,7]
[r] _ [s] [g.7]
[g.7] [7,s] [g.7]
[p.q.7] lq.7, 5] [g.7]

1.46 FORMAL LANGUAGES AND AUTOMATATHEORY

[s] o [p]
[r, 5] [s] [p.q.7]
[g.7, 5] [r, 5] [p,q,r]

Q={Ipl. [al, [r] [s]. [q.1], [, s]. [q, 8], [p.q.r]. [Q. 1,81},
v = { 0,1}, [p]isthe starting state,

ajldF:{[q]’ [s]5 [q?r]5[r5s]3[qﬂs]3[p)q3r]7[q’ rBS]'

Example 3 : Find a DFAequivalent to NFA M =({g,,91,4>},{0:1}, 8.9¢.{9,}) , where §is defined

as follows .
PS ' NS
0 1
—> 4, {90-9, } {9, }
q, {4, } {9, }
- 190> 4, }
Solution : Let M'=(Q, Z, 8, [g,], F) bethe equivalent DFA, where Z = {a, b} ,and [g,] is
the initial state.
Transition table :
NS
PS 0 1
—{g] (9,5 9,] [g,]
[4,] o [9059:]
(90, q,] (90> 41] (g, Q2]
[4,: 4,] [4,] (405 4,]

0 ={(q0).[921Lq0- 01 }.[a1-9, 1} » and F = {[g,1.[9,,4,1}

Transition diagram :

FIGURE : Equivalent DFA

FINITE AUTOMATA

1.47

Example 4 : A NFA which accepts set of strings over { 0, 1 } such that some two zero's are
separated by a string over { 0, 1 } whose length is 47 (n>0) is shown in below figure . Construct

equivalent DFA,

FIGURE:NFA

Solution: Letequivalent DFA M = (Q,%,5,(q,1,F). constructing transition table for given

NFA ;

(NS)
(PS) 0 1
- {a} -
q, { 9,9 } {q,}
9, {4} {g, }
q, ta} {a}
q, { q } { a4 }
: :
Constructing transition table for equivalent DFA :
(NS)
(PS) 0 1
g1 [q1] ¢
[4] [,,9, 1 [9.]
[g.] [4,] [g.]
[g,] [g.] [4.]
[q.] [¢;] (]
[4,] [4,]

1.48 FORMAL LANGUAGES AND AUTOMATATHEORY

Where: Q ={[QO]a[QI]:[‘12]s[QS]9[Q4]s[‘h st]}=E={0J},[Qo] iS Starting State> F = {[‘h’ ds]} H alld
transition function is defined above.

Transition diagram :

FIGURE : Equivalent DFA

1.5 NFAWITH € - MOVES

1.5.1 Finite automata With < - Transitions

This is same as NFA except we are using a special input symbol called epsilon (€). Using this
symbol path we can jump to one state to other state without reading any input symbol.

This also analytically indicated as 5 - tuple notation.

N =(0,5.0,9,,F)
0 — set of states in design
¥ — input alphabet

g, —> initial state
F — final states (cQ)
& —» mapping function indicates Qx (Zu{e})—>22

Example : Draw a transition diagram of NFAwhich include transitions on the empty input e and
accepts a language consisting of any number a's followed by any number of b's and which in turn

followed by any number of ¢'s.

FINITE AUTOMATA 1.49

Solution : It requires three states ¢,, g, and ¢, and they accept any number of a's, b'sand ¢'s
respectively. Assign ¢, as final state.

a b c
ATNATENA
()
Toreach from ¢, to ¢, and g, 0 g, no input will be giveni. e., they treat ¢ as their input and do
the transition.

a b [

AYRATA
OmuOmn O

Normally these ¢'s do not appear explicitly in the string,
The transition function for the NFA is shown below :

a b c €
—> g, {90} ¢ o {a,}
g, o {a.} ¢ {9}
¢ ¢ (0.} ¢

For example consider the string ® =ab ¢

String ® =ab ¢ (i.e., string in actual formis a € b ec i. e., included along with epsilons).

8(g,, abc) |- 8(q,, bc)
- 8(qq> €be)
= 3(g,, be)
|- 8(q1, <)
- 8(9:, ©) g, €F
The path is shown below :

%% % 'a 9, g,
witharcs labeled a, €, b, €, ¢

1.50 FORMAL LANGUAGES AND AUTOMATATHEORY

Extension of Transition Function From 5 to 3

The extended transition function § maps Ox ' to 2¢. Itis important to compute the set of
states reachable from a given state g, using e transitions only for constructing 5-

The < closure (g,) isused to denote the set of all vertices g, such that there is a path from
g, to g, labeled ¢.

Consider the problem q:) e € € .

Here ¢ - closure (QO) = {QU’Qqus‘h }

0 (QME) = e—closure = {QD5Ql!q2’Q3 }

- closure (q) is used to denote the set of all states s such that there is a path from q to s for
string o , includes edges labeled <.

Note : The transition on ¢ doesnot allow the NFA to accept Non - regular sets.

Definition : The extended transition function § is defined as follows:

() 3§(q,e) =c- closure(q)
(i) For w in ¢* and x in .8 (g,0x)=€ -closure(s), where s = { s | for somerin
5(q,w).s € 8 (r, x)} & canbeextended § by extension to set of states.

i) 8 (R 9=, 5% and

() b (Ro)= U 3(q0).

Note : § (g, a) isnotnecessarily equal to & (¢, a) .

Example : The following NFAwith ¢ transitions accepts input strings with (a's and b's) single a
or a followed by any number of b's.

FINITE AUTOMATA 1.51

The NFA accepts strings a, ab, abbb etc. by using e path between g, and g, we can move
from ¢, stateto g, without reading any input symbol. To accept ab first we are moving from g,

to ¢, reading aand we can jumpto g, state without reading any symbol there we accept band
we are ending with final state so it is accepted.

Equivalence of NFA with .. Transitions and NFA without - Transitions

Theorem :Ifthe language L is accepted by an NFAwith < — transitions, then the language L,
is accepted by an NFA without <— transitions.

Proof : Consider an NFA 'N'with - transitions where N =(Q, Z, 8, q,, F)
Constructan NFA N, without e transitions N, =(Q,, Z, 8,, ¢,, F)
where Q, =Q and

1

7o Fu {qo } if e- closure(q,) contains a stateof F
F otherwise

and 8, (g,a) is & (g,a) forqinQandain 3.

Consider a non - empty string @ . To show by induction || that § (g,, ®) = 8 (g,,®)
For @ =¢, the above statement is not true. Because

51(q0-€)={q0} »
while 5(gy.c)=€ —closure (q,)

Basis :

Start induction with string length one .
ie., |o|=1
Then wis a symbol a, and &, (g, ,a)=$ (g,,a) by definition of 3.

Induction : lo|>1
Let ® = xy forsymbolain y,.

Then 8,(g,xy)=0,(8,(q9>x),¥)

1.52 FORMAL LANGUAGES AND AUTOMATATHEORY

By inductive hypothesis

8, (405 ¥) = 8 (¢ %)
Let é:(qu,x)=s
We have to show that §, (s,y)=c§(q(, Xy)

O U ~
But dy(s,¥y)= d,(q,y)= 6(q.y)
ges ges
then 5=5(g0%)

| ~ A
5(‘]5}’) =5(‘]0:x)
ges

Byrule (Rule:For o €X' and x € %, § (g, ox) = e— closure (),

where s = { s| forsome rin § (4, ») » s € &(r,x)} inthedefinitionof §).

Th‘l.]S 8] (qo,xy)zé(qosxy)'

To complete the proof we shall show that &' (g,, w) containa state of F' if and only if 8 (4, X)
contain a state of F. For this two cases arises.

Casel:If o = ¢, this statement is true from the definition of F.

ie, 8,(q,9={4q}
= qo€ F'

Whenever § (g,, €) is e- closure (g,) , contains astate in F (possibly is g,).

Casell : If ® # € then W=xy for some symbol y.
If§ (g,, @) contains a state of F, = §,(q,,) contains some state inF

Conversely, if &, (q,, ®)eF, otherthan g,,=&(g,,0)eF -
If 6,(qy,®)€q, and ¢, ¢ F ,then
8(¢,, @) = - closure (6(6(gy@))).

The state in <- closure (g,)and in Fmustbein §(g,,)

FINITE AUTOMATA 1.53

Calculation of « -closure :
€ - closure of state (e-closure (q)) defined as it is a set of all vertices p such that there is a
path from q to p labelled < (including itself).

Example :
Consider the NFA with < - moves

A LA LA .M
(@~~~

e - closure (Q0)= {QM q15 9,5 44 }

e - closure (¢,)={ 4, ¢, ¢: }

e — closure (¢,)={q,, g, }
e - closure (g,)= {qg, }

Procedure to convert NFA with « moves to NFA without < moves

Let N =(Q, £,8, q,, F)isaNFAwith ¢ movesthenthereexists N'=(Q0,e,8,q,,F") without

e moves

1. Firstfind e — closure of all states in the design.

2. Calculate extended transition function using following conversion formulae.
® 5(g x)= e~ closure (5(5 (g, e), x))
(ii) g(q,e)ze — closure (q)

3. F'isasetofall states whose ¢ closure contains a final state in F.

Example 1 : Convert following NFAwith ¢ moves to NFAwithout ¢ moves.

__@a@a'

Solution : Transition table for given NFAis

o a b €
—>4g, q, o ¢‘ ¢'
q, ¢ ¢ q,

¢ 7, ¢

1.54 FORMAL LANGUAGES AND AUTOMATATHEORY

(i) Finding < closure :
e —closure (g,) = {4}
e— closure (q,) = {4,, ¢,}
e- closure (g,) = {4,}

(i) Extended Transition function :
5 a b
— 4, {91,492} ¢

¢ {0}
o {q,}

8 (4,, @) ¢ —closure (8 (8(4,€).a))

= e—closure (8 (e—closure (q,) , a))
= e—closure (8 (q,, a))

e—closure (q,)

il

={41:92}

& (g4, B) = —closure (5(5 (g4-€)0))
=e— closure(d(e—closure (q,), b))
=e- closure(d (g,, b))
=e— closure(¢)

=6

8 (g,,a) =e— closure(ﬁ(é (g,, €), a))
=e— closure(d (e~ closure(q,), a))
=e- closure(d ((4,, 9,), 2))
=e— closure(d (q,, a) wd(q,,a))
=e— closure (§)

=¢

FINITE AUTOMATA

1.55

(iii)

(iv)

8 (,,b) = e closure (5 (3 (g,, €), b))
= €— closure (8 (€- closure(q,), b))
= e—closure (8 ((g,,9,), b))
= - closure (8 (q,,b) U & (q,,b))

Il

€— closure (gq,)

{9,}

3 (q,,a) = ¢— closure (S(S(qz, €), a))
= €— closure (8(e€—closure(q,), a))

=€ —closure (8(q,,a))

I

e~ closure ()
= ¢ .
8 (g,,b) = €— closure (8 (8 (g,, €), b))
= €~ closure (8 (e—closure (q,), b))
= €~ closure (8 (g,, b))
= e~ closure (g,)

={q,}

Final states are ¢,, g,, because
e closure (g,) contains final state
€— closure (g,) contains final state

NFA without € movesis

1.56 FORMAL LANGUAGES AND AUTOMATATHEORY

Example 2 : Convert the following NFAwith ¢ — moves into equivalent NFAwithout ¢ — moves.

Solution : Transitiontableis

0 1 €

=g, 9o ¢ 9
a5 %, ¢
q, g, g, ¢
qs g, qs ¢

(i) Finding c- closure :

e— closure (q) is aset of states having paths on epsilon symbol from state q.
e— closure (g,) = {4,.9, }
e closure (q,) = {q, }
e— closure (g,) = {q, }

e- closure (q;) = {q, }

(i) Extended Transition function :

§ (94, 0) e— closure (& (3 (4,5 €),0))

e— closure (& (€ - closure (g,), 0))

e— closure (8 ((gy, q,), 0))

=e —closure(5(g,y,0)w 8(g,,0))

FINITE AUTOMATA

1.57

= €— closure (q,, q,)
= e-—closure (q,) v e- closure (g,)
={q0,01} Y {g;}
={4q0:41.93}
S(qo, 1) =e—closure (6(8 (g4-6), 1))
=e—closure (8(€ —closure (g,), 1))
=e—closure (8 ((4,,q,), 1))
= € —closure(5(g,,1) Wd(q;,1)) =€ —closure(p U g,)

=e—closure (q,)

={q,}
Continuing like this the table is generalised as follows.
0 1
-(4,) {20983} 4
@ S 4 9,
q, q; q;
qs qs q;

(iii) Final states are g,,q, , because

e-closure (g4)={g,-9;} it contains final state
e-closure (¢,) =g, isalso final state

(iv) NFA without ¢ movesis:

1.58 FORMAL LANGUAGES AND AUTOMATATHEORY

Example 3 : Find an equivalent NFA without ¢ - transitions for NFAwith ¢ transitions

shown in below figure.

FIGURE : NFAwith <— transitions
Solution : The transition table is,

Inputs
States 0 1 2
—> 4, {4} ¢ ¢
QI "1) {qy} ¢
¢ 0 {q,}

TABLE : Transition Table for the NFA in above figure.

GivenNFA M = ({q,.9:> 9} { 0, 1,2, €}, 8, 40> {22 }) -
Now NFA without - moves.

M=(0,%,8,4,, F)
() Finding e - closure:
e—closure (4,)= {4,, 91> 9,}
e—closure (¢,)={4,> ¢,}
e—closure (g,)={q,}

(i) Extended Transition function:
5 (g,-0) = e—closure (8 (S (4,5 €),0))

e—closure (8 { gy, G, 423 >0
=e —closure(8(qy,0)v 8(g;,0) w 5(g,,0))

It

FINITE AUTOMATA 1.59

e—closure ({q,} VU)

e—closure (g,)

{9::9159,}
é(goy])

e~closure (8(5 (g,, €), 1))

e—closure (8({q,,9,,9,}, 1))
e—closure [8(g,,1) U 8(g,,1) U3(g,,)]
e—closure (¢ v g, V)

Il

Il

e—closure (g,)

={904:}
Similarly for other transitions gives, transition table § (g, q)
Inputs

States 0 1 2

— {qD:q[sQZ} {q”q2} {q;}

o {9,,9,} 14,}
¢ 0 {4,

TABLE : Modified Transition Table for the NFA in above figure

(i) F' contains g,,g;,9, because - closure (g,), e— closure (g,) and - closure (g,)
contains g, .

) M'=(0,%,8,q,, F') NFAwithout e transitionsis,

FIGURE : NFAwithout - transitions

1.60 FORMAL LANGUAGES AND AUTOMATATHEORY

Example 4 : Forthe following NFAwith — moves convert it into an NFA without e — moves.

FIGURE : NFAwith - moves

Solution :

Let given NFA with < — moves be,

M=(Q,%,8,q,, F)
0={1,2,3,4,5,6,7.8} ; Z={a, b}
g,=1; F={17,8}

Finding e - closure:

First we need to find e — closure of all states of M.

3(q,e)=e —closure(q)

8(1,e)=e —closure(1)={1,2, 3,6}
8(2,€)=e —closure(2)={2,3,6}

5 (3,e)=c —closure(3)={3}
5(4,6)=e —closure(4)={4,5}
8(5,e)=c —closure(5)={5}
8(6,€)=¢ —closure(6)={6}
3(7,e)=e —closure(7)={2,3,6,7}
5(8,€)=c —closure(8)={2.3, 6.8}

FINITE AUTOMATA

1.61

(i) Extended Transition function:

§(l,a) =e—closure (6(5(1,€).a)
€— closure (8({1,2,3, 6}, a))
= e-closure ({4, 8})

{2,4.5,6, 8}

S(1,b) =e-closure(5(5(1,€).b))
= e— closure (8 ({1,2,3,6}, b))

= - closure ()

= {¢}

§(2,a) =e—closure(5(5(2,€),a))

={2,4,5, 6, 8}

8(2,6) = —closure(5(5(2,€)b))

= (¢}

5‘(3,:1) =e —closure(é‘(é(le),a))

={4,5}

5(3,b) = —closure(5(5(3,€),a))

={¢}

5(4,0) = € —closure (5(3(4,6),0))

={g}

5(4,b) = c —closure (3(5(4,€),h))

={7}

3(5,a) = € —closure (5(3(5,6),:1))

={¢}

8(5,b) = € —closure (5(5(5,€),b))

={T}

3(6,.&) = € —closure (& (5‘(6,6),(1))

=(8)

1.62 FORMAL LANGUAGES AND AUTOMATATHEORY

5(6.,p) = e —closure (5(5(6,€),h))
={¢}

5(1,a) = e —closure (5(5(7,€),a))
={4.8}

5(7,b) = e —closure (5(5(7.€),b))
={¢}

§A(8,a) = e —closure (5(5'(8,5),{.1))
={8}

5"(8,5) = e —closure (5(3(8,6),b))
={¢}

Final states of M includes all states whose - closure contains a final state of M.
F= { 1! 7: 8 }

Transition table s,

a
{2,4,5,6,8}
£2,4,5,6,8}
{4,5}
¢
¢
18}
{4.8}
{8}

o> o & M~ o o |
g =
T Nt

@@c\u‘.nwx.\a@

FIGURE : Transition Table for the NFAin above figure.

FINITE AUTOMATA 1.63

Transition diagram of NFA without ¢ — transitionsis,

FIGURE :NFA without < - fransitions

1.64 FORMAL LANGUAGES AND AUTOMATATHEORY

REVIEW QUESTIONS

Q1. Explain difference between DFA and NFA.
Answer :
For Answer refer to Page No : 1.12.
Q2. consider the FA shown in below figure. Check the acceptability of following strings:
(a) 0101 (b) 0111 (c) 001

FIGURE : F_inite automata

Answer :

For Answer refer to example - 1 , Page No : 1.13.

Q3.LetaDFA M =(0,%,6,q,,F) isshownin below figure.

FIGURE:DFA
Check that string 33150 is recognized by above DFA or not ?

Answer :

For Answer refer to example - 2 , Page No : 1.13.

FINITE AUTOMATA

1.65

Q4. Consider below transition diagram and verify whether the following strings will be
accepted or not ? Explain.

Start o

FIGURE : Given Transition Diagram

i) 0011 i) 010101 iii) 111100 iv) 1011101 .
Answer :

For Answer refer to example - 3 , Page No : 1.14.

Q5. Consider the NFA shown in below figure. Check the acceptability of following string

scanf ("%d", & num) ;

Note : Letter stands for any symbol from { a, b, , Z }and digit stands for any digit
from{0,1,2,9}.

Answer :

For Answer refer to example - 4 , Page No : 1.15

1.66 FORMAL LANGUAGES AND AUTOMATATHEORY

Q6. Obtain a DFA to accept strings of a's and b's starting with the string ab .
Answer :
For Answer refer to example - 5 , Page No : 1.16.
Q7. Draw a DFA to accept string of 0's and 1's ending with the string 011.
Answer :
For Answer refer to example - 6, Page No : 1.18.
Q8. Obtain a DFA to accept strings of a's and b's having a substring aa .
Answer :
For Answer refer to example - 7, Page No : 1.20.
Q9. Obtain a DFA to accept strings of a's and b's except those containing the substring aab.
Answer :
For Answer refer to example - 8 , Page No : 1.22.
Q10. Obtain a DFA to accept strings of a's and b's having exactly one a, atleast one a,
- not more than three a's.
Answer :
For Answer refer to example - 9, Page No : 1.24.
Q11. Obtain a DFA to accept the language L= { awa | w €(a+b)*}.
Answer :
For Answer refer to example - 10 , Page No : 1.27.
(Q12. Obtain a DFA to accept even number of a's, odd number of a's .
Answer :
For Answer refer to example - 11, Page No : 1.29.
QQ13. Obtain a DFA to accept strings of a's and b's having even number of a's and b's.
Answer :

For Answer refer to example - 12 , Page No : 1.29.

FINITE AUTOMATA 1.67

Q14. Design a DFA, M that accepts the language L(M)={wlwe{a, b}'} andw
does not contain 3 consecutive b's.
Answer :

For Answer refer to example - 13 , Page No : 1.31.

Q15. Design DFA which accepts language L = {0, 000, 00000, } over{0}.

Answer ;
For Answer refer to example - 14, Page No : 1.31.

Q16. Obtain an NFA to accept the following language L = { wjw € abab” or aba" where n =0}
Answer ;

For Answer refer to example - 15 , Page No : 1.32.
Q17. Design NFA to accept strings with a's and b's such that the string end with 'aa’.
Answer :

For Answer refer to example - 16, Page No : 1.32.
Q18. Design an NFA to accept a language of all strings with double 'a' followed by double 'b'.
Answer :

For Answer refer to example - 17, Page No : 1.35.
Q19. Design an NFA to accept strings with 0's and 1's such that string contains two

consecutive 0's or two consecutive 1's.

Answer ;

For Answer refer to example - 18 , Page No : 1.36.

Q20. consider a NFA shown in below figure. Find equivalent DFA.

FIGURE : Non - deterministic finite Automata
Answer :

For Answer refer to example - 1, Page No : 1.43.

1.68 FORMAL LANGUAGES ANDAUTOMATATHEORY

Q21. construct equivalent DFA for NFAM = ({pars },' {01}, 5, p{q s}) where
3 is given below . :

|0

1
p {q,s} {a}
@ {r} {q,r}
r {S} {qlr}

® {p}

Answer :

For Answer refer to example - 2, Page No : 1.45.

Q22. Find a DFA equivalent to NFA 17 = ({9059, ,};2},{0,1}, 8,90:{q,}) , where §is defined

as follows .
PS NS
0 1
=4, 90,9, } {9, }
‘3 {9, } 9}
- {9 ¢, }
Answer :

For Answer refer to example - 3 , Page No : 1.46.

Q23. ANFA which accepts set of strings over { 0, 1 } such that some two zero's are separated by

astring over {0, 1 } whose lengthis 4n (n> 0) is shown in below figure . Construct equivalent
DFA.

FIGURE:NFA

Answer ;

For Answer refer to example - 4, Page No : 1.47.

FINITE AUTOMATA

1.69

Q24. Convert following NFAwith < moves to NFA without € moves.
' /2
"m =)

For Answer refer to example - 1, Page No : 1.53.

Answer :

Q25. Convert the following NFAwith < — moves into equivalent NFAwithout < — moves.

0
O O W O

Answer :

For Answer refer to example - 2 , Page No : 1.56.

Q26. Find an equivalent NFA without « _ transitions for NFA with e transitions
shown in below figure.

FIGURE : NFA with <— transitions
Answer :

For Answer refer to example - 3 , Page No : 1.58.

1.70 FORMAL LANGUAGES AND AUTOMATA THEORY

Q27. For the following NFAwith < — moves convert it into an NFA without «— moves,

FIGURE :NFAwith «— moves

Answer :

For Answer refer to example - 4 , Page No : 1.60.

FINITE AUTOMATA 1.7

& OBJECTIVE TYPE QUESTIONS }
1. Whichofthe following s there is an FA?

(@) State Transition (b) Input

(c) State d) All of the above.

2. Thebasiclimitations of Finite state machine is that
(a) it sometimes recognizes non regular language
(b) it sometimes does not recognizes regular language,
(c) it can't remember arbitrary large information

(d) all of the above.
3. Givenadfa 4= (S, Z,50,6, F) »Aacceptsaword we > iff
(@) 8(s,w)doesn't € F, Where s+ S0 (b) 8(s,w)e F, Where s+,
(¢) &(s,w)doesn't e F, Where s= S0 (d) 8(s,w)e F, Where s = o
4. dfacanrecognize
(a) Only regular language (b) Only unambiguous grammar
(c) Only CFG (d) Any grammar
5. dfahas:
(a) Unique path(for a set of inputs) to the final state
(b) Single final state
(c) More than one initial states (d) All of the above.
6. Thelanguage generated by a deterministic finite automata is,
(2) Informal language. (b) Context sensitive language
_ (c) Context free language (d) Regular Language
7. ltisgiventhat 8(g,x) =3(q, y), then (g, xz) = 8(q, yz) for All strings z in:
@) ~x (®) 3+) = D z*

8. Find the false statement for finite automata,
(@) if 6(g,9)=8(q, x)then 5(g,x2)=5(q.,y2). (b) &(¢,€) =¢
() 8(q,xw)=5(q,wx) (d) 8(q,xw)=3((g,x),w)

9. Consider the FA for a switch with ON/OFF facilities. The automata can be designed with
minimum no of states ?

(a)4 (b)3 (c)2 @1

1.72

FORMAL LANGUAGES AND AUTOMATA THEORY

10.

11.

12.

13.

14.

15.

16.

Application of finite automata cannot be found in:

(a) String matching (b) Lexical analyzers

(¢) Spelling checkers (d) Storage purpose

Find the false statement : An i Instantaneous description, of the finite-state automation is a
singleton ugv, where:

(a) the configuration is said to be a final configuration if v =e and g is the initial state.
(b) the configuration is said to be an initjal configuration if u =€ and ¢ is the initial state
(c) uvisastringin 5*

(d)qisastatein §

L isanonempty language such that any winL has length n, then any dfa accepting L must
have

(a) exactly (n+1) states. (b) .atmost (n+1) states

(c) atleast (n+1) states (d) exactly n states

Find the false statement for finite automata,

(@) if (g,) =8(q, x) then 8(¢,xz) = §(g, yz)

() 3(g.€)=¢

(©) 8(g,xw) = 5(g,wx)

(d) 8(g,xw)= &(delta(q,x),w)

It,inadfa, 8(g1,x) =g, and (g2,) = g, then 8(gy, xy) is

(a) some state g5 (b) ¢ (©) g9 (d) None of the above.

For a deterministic finite automata, js = (8,Z,8,q¢, F);8, the transition function is defined
as:

(@) 5:5xx 5+ (b) 5:5xS %
(©) 8:5xT > 3% (d) 8:5xXufe} > Q
The rules for nfa state that

(a) every state of a nfa may have Zero, one, or many exiting transition arrow for each
symbol in the alphabet,plus".

(b) every state of anfa may have zero, one, many exiting transition arrow for each symbol
in the alphabet,

(c) every state of a nfa must always have exactly one exiting transition arrow for each
symbol in the alphabet.

(d) every state of a nfa must always have at most one exiting transition arrow for each
symbol in alphabet.

FINITE AUTOMATA 1.73

17.

18.

19.

20.
21.

22.

The rules for dfa state that

() every state of a dfa must always have exactly one exiting transition arrow for each
symbol in the alphabet.

(b) every state of dfa must always have at most one exiting transition arrow for each
symbol in the alphabet.

(c) every state of a dfa may have zero, one, or many exiting transition arrow for each
symbol in the alphabet,plus". 4

(d) every state of a dfa may have zero, one, or many exiting transition arrow for each
symbol in the alphabet.

A nfa computes by reading in an input symbol from a string, and splits into multiple copies
of itself, one for each possible transition. If the next input symbol doesn't appear on any of
the arrows existing for the current state of a copy of the machine, that copy dics. A nfa
accepts an input string when all the input symbols have beenreadand........

(a) any one of the alive copies of the machine are in an accept state.

(b) all copies of the machine that died were in areject state

(¢) any one copy of the machine that died was in a reject state.

(d) all of the alive copies of the machine are in an accept state

Consider the following two finite state machine in Figure.

(a) The first finite state machine accepts nothing

(b) Bothare equivalent (:) and () @

(¢) The second finite state machine accepts e-only

(d) none of the above.

For text searching applications which of them is used:

(a) npda (b) pda (c)dfa (d)nfa

If'S is the number of states in ndfa then equivalent dfa can have maximum of
(a) o5 _1 states (b) s states (c) S-1 states (d) S states

How many of 00, 01001, 10010, 000, 0000 are accepted by the following nfa :

(@3 (b) 4 ©1 (d)2

1.74

FORMAL LANGUAGES AND AUTOMATA THEORY

23.

24,

25.

26.

For a non-deterministic finite accepter, M =(S,%,8,q9, F);5 , the transition function is
defined as: :

(@) 3:5x(Ex{e}) —»25 Ms&:Sxx > §
(©) §:5xx 525 (d) None of'these.
Find the true statement, 7

(a) There is nothing like non-determinism in finite-state automata,

(b) It depends from case to case.

(c) Non-determinism does not add to the recognition power of finite-state automata.
(d) Non-determinism adds to the recognition power of finite-state automata,

Given an arbitrary non-deterministic finite automation(nfa) with N states, the maximum
number of states is an equivalent minimized dfa is at least '

(a) A (b) ¥ (c) oV (d) w2
M =({qI »92:933,{0.1}.6,¢;,{g,}) is a nondeterministic finite automation, where delta is given
by 8(q1.0)=1{a2.93} 8(q1.))={q}
8q2.00={q1.92} 8(g2.)) = {¢}
8(43.0) = {2}, 8(g3.) = {41, 92}
Anequivalent dfa is given by which one of the following :
(a) 0 1 (b) 0 1
d0 a1 90 90 q d0
Qi 92 92 91 92 92
92 90 93 92 73 90
q3)] a3 q3 q3 93
(©) 0 | (d) 0 1
90 Qi d0 90 q 90
q q2 q2 q] q2 q2
b 90 43 ey 93 90
q3 g3 a2 3 q3 q2

FINITE AUTOMATA

1.75

27. Therecognizable property of dfa and ndfa

(a) Must be same (b) May be different
(c) Must be different (d) None of the above.
| ANSWER KEY

1d) 2() 3(d) 4@ 5@ 6(d 7() 8(c)9(c) 10(d)

11@a) 12(c) 13(c) 14(b)15(c) 16(a) 17(a) 18(a) 19(d) 20 (d)
21(b) 22(d) 23(a) 24(c)25(c)26(c) 27(a)

2

FINITE STATE MACHINES

After going through this chapter, you should be able to understand :

Finite State Machines

Moore & Mealy Machines

Equivalence of Moore & Mealy Machines
Equivalence of two FSMs

Minimization of FSM

2.1 FINITE STATE MACHINES (FSMs)
A finite state machine is similar to finite automata having additional capability of outputs.

A model of finite state machine is shown in below figure .

Finite control

Input reading Output
head producing head
WL T TTTTIs] MDITTITTs]
v

Input tape Output tape

FIGURE : Model of FSM
2.1.1 Description of FSM
A finite state machine is represented by 6-tuple (0,2,A,5 »4.q,) , Where
L. Qisfinite and non - empty set of states,

2. 3 isinputalphabet,
3. A isoutputalphabet,

2.2

FORMAL LANGUAGES AND AUTOMATATHEORY

4. 3 istransition function which maps present state and input symbol on to the next state or
Ox2—>Q,

5. 3 isthe output function, and
6. ¢,=0Q,istheinitial state .

2.1.2 Representation of FSM

We represent a finite state machine intwo ways ; one is by transition table, and another is by
transition diagram . In transition diagram , edges are labeled with Input/ output.

Suppose , in ransition table the entry is defined by a function F, so for input a, and state g,
g) = (8(g;, 4}, Mg;»a,)) (where § is transition function, 3, is output finction.)

Example 1 : Consider a finite state machine, which changes 1's into 0's and O'sinto 1's
{ 1's complement) as shown in below figure .

Transition diagram :

oAl

1o

FIGURE : Finite state machine

Transition fable :
Inputs
0 I
Present Next State (NS) | Cutput Next State (NS) Output
State(PS)
q q ! q 0

FINITE STATE MACHINES 2.3

Example 2 : Consider the finite state machine shown in below figure, which outputs the 2's
compilement of input binary number reading from least significant bit (LSB),

® @
_g 171 ,

FIGURE : Finite State machine

Suppose, input is 10100. What is the output ?
Solution : The finite state machine reads the input from right side (LSB).

Transition sequence for input 10100 :

Zﬁpﬂfs PR—

dy »” -
.0.0()1‘\?‘/"1 o {}

Outputs .y
So, the output is 01100.

2.2 MOORE MACHINE

If the output of finite state machine is dependent on present state only, then this model] of
finite state machine is known as Moore machine,

A Moore machine is represented by 6-tuple (Q,%,A,4, 4,q,), where
Q is finite and non-empty set of states,
> isinput alphabet,
A isoutput alphabet,
8 is transition fimction which maps present state and input symbol on to the next state or
Oxi -0,
A is the output function which maps O -» A, (Present state —» Qutput), and
4o € O ,is the initial state .

G I T s

If Z (1), ¢ (r) are output and present state respectively attime f then
Z{ty = (g ().
Forinput e (null string), Z () = A (initial state)

2.4 FORMAL LANGUAGES AND AUTOMATATHEORY

Example 1: Consider the Moore machine shown in below figure.Construct the transition
: table. What is the output for input 010107

Quitput = 0

Output = 1

FIGURE: Moore machine

Solution : Transition tableisas follows:

Tnputs
0 i
Present Next State Next State Output
State (PS) State (NS} State (NS)
g, g, ‘3 0
4 4, 4 0
2, 4 3 0
4 q, g, 1

Transition sequence for string 01010

O OanOan OO0
AN B 0 0 0 0 N/

So, the output is 00000,

Note : Since, the output of Moore machine does not depend on input, So, the first output
symbolisadditional from the initial state without reading the input i.e., null input and output length
is one greater than the input length, but not included in the above output.

FINITE STATE MACHINES . 2.5

Example 2 : Design a Moore machine, which outputs residue mod 3 for gach binary input string
freated as & binary integer.

Solution : Let Moore machine M = (Q, T, A, 8, A, g,), where T = {0, 1}
A = {0, 1,2} (outputs after mod 3), |
Let three states {g,, ¢4, q,} arethereand
State g, outputs 0,
State ¢, outputs 1, and
State ¢, outputs 2.
Ifinputis binary string X, then
X is followed by a 0 is equivalent to twice of X
X is followed by a 1 is equivalent to twice of X phus 1.
X0 = (2% X)), (indecimal system), and
X1=(2* X), +1 (indecimal system)
X mod3=rfor r=0o0r1or2, then
XOmod3=2%rmod3 (¥or input 0)

=(orZori

For transition :
G, > Gorrmeas fore=90,1,2
X imod 3=(2 *r +)mod 3 (Forinputl)
= 10,2

For transition :

dr ™ Qeasrrtymod 3 forr=90,1,2

2.8 FORMAL LANGUAGES ANDAUTOMATATHEORY

Transition diagram :

Exampie 3 : Design a Moore machine which reads input from (0+1+2)* and outputs residue mod
5 of the input. Input is considered at base 3 and it is ireated as ternary integer.

Solution :

LetMoore machine M = (0, T, A, 8, A, g,) produces outputresidue mod 5 for eachinput
string written in base 3. '

T o= {0,1,2},A = {0,1,2,3, 4}

Let five states {g,. 44, 44. 93, ¢4} arethere and

State g, outputs 0,

State 4, outputs 1,

State ¢, outputs 2,

State g, oufputs 3, and

State g, outputs 4.

I input is binary string w, then

w is followed by a 0 is equivalent to thrice of 1y,

w isfollowed by a 1 is equivalent to thrice of y plus 1,
w is followed by a 2 is equivalent to thrice of i plus 2.

Or

W0 =(3*W) (ndecimal system),

W1e (3%W) +1 (indecimal system),

W2=(3*W)y +2 (indecimal system)

If wmod 5=y ,for r = {0,1,2,3,4} (inthe order of the elements), then
Womod 5=3*rmod 5 (Forinput()

={0,3,1,4,2} (Inthe order of elements)

FINITE STATE MACHINES

2.7

For transition:
O, = O rmaas for r = {0,1,2,3,4) (inthe order of the elements)
Wimoed 5={3*r+1ymod S5 (forinputl)
= {1,4,2,0,3} (Inthe order of elements)

For transition :

@, > Qsrratimon s for ¢ = {0,1,2,3,4} (intheorder of the elements)

W2mod 5=(3*7+2)mod 5 (forinput2)
= {2,0,3,1,4} (Intheorder of elements)

- For transition :

0, = Qaeranmas for r = {0,1,2,3,4} (inthe order of the elements)
Transition {able

Inputs
0 1 2
PS NS NS NS Qurtput
Ty 9 _ 9 2 0
‘B 3 iy 9y 1
4 4 4 s 2
s 4 9o H 3
% 9 4s % 4

2.3 MEALY MACHINE

If the output of finite state machine is dependent on present state and present input, then

this model of finite state machine isknown as Mealy machine,

A Mealy machine is described by 6 - tuple (0,2,A.8.4,4,) .
where

1. © is finite and non-empty set of states,
2. s isinputalphabet,
3. A isoutputalphabet,

2.8 FORMAL LANGUAGES AND AUTOMATA THEORY

4. g istransition function which maps present state and input symbol on to the next state or

gx I -> @G,
5. 3 isthe output function which maps OxZ—» A ((Present state, present input symbol) —»

Qutput), and
6. g, Q,istheinitial state.
If 2(t), g(r), and x (£) are output, present state, and present input respectively attime ¢,

Then, Z (1) = & {g (O, x(£))

Forinput ¢ (nullstring), Z (1) = e

Exampie 1: Consider the Mealy machine shown in below figure. Construct the transition table
and find the output for input 01010,

FIGURE : Mealy Machine

Solution : Transition table is construcied below.

Inputs
0 1
PS NS Output NS Output
8, 5 1 s, 0
3 5, 0 8, 1
S’l s! } Sl 0

FINITE STATE MACHINES 2.9

Transition sequence for input 01010

I 1 N1 N /1

(So, the outputis 11111.)
(Note : The output length is equal to the input length).

Example 2 : Construct a Mealy machine which reads input from {0, 1} and outputs EVEN or
ObD according o total number of 1°s even or odd.

Solution :

We consider two states ¢,, which outputs EVEN and 4, which outputs GDD.
Suppose, ¢ e(0 + 1)" has even number of 1's, thenall also has even mumber of 1's.

Suppose, b «(0 + 1)° has odd number of I'sthen bl also has odd number of I's.
Transition diagram :
0/ EVEN

1/EVEN

FIGURE : Mealy Machine

Example 3 : Design a Mealy machine which reads the input from (0+1)* and produces the
following ouiputs.

(i) ¥ input ends in 101, output is A,

(i} H input ends 110, the cutpuitis B, and

{iiiy For other inputs, outputis C.

Solution : Suppose, Mealy machine M = (0, I, A, 8, A, ¢,) which reads the inputs from
(0 + 1) *, starting from the least significant bit (LSB).

2.10 : FORMAL LANGUAGES AND AUTOMATATHECRY

Consider three LSBs of Input Output
L0000 (X ¢
001 (X) c
010 (X) C
011 (X) c
..100 (X) c
101 A
o H) B
LX) C

Transition diagram :

101/ 4 D}
i 12{}/3@

x/C
@)

FIGURE : Moore Machine

2.4 EQUIVALENCE OF MOORE AND MEALY MACHINES

We can construct equivalent Mealy machine for a Moore machine and vice-versa. Let A1, and
M, beequivalent Moore and Mealy machines respectively. The two outputs 7; (w) and 7, (w)
are produced by the machines M, and A, respectively for input string w . Then the length of

7, (w) is one greater than the length of Z,(w), ie.

[T] ={Tn]+1

The additional length is due to the output produced by initial state of Moore machine. Let output
symbol x is the additional output produced by the initial state of Moore machine, then -
Ti(w)=xTr(w). |

FINITE STATE MACHINES 2.1

It means that if we neglect the one initial output produced by the initial state of Moore machine,
then outputs produced by both machines are equivalent. The additional output is produced by
the initial state of (for input) Moore machine without reading the input. '

Conversion of Moore Machine to Mealy Machine
Theorem : If 31, =(0.%,A,8,2,4,) isaMoore machine then there exists a Mealy machine
M, equivalentto M,. _
Proof : We will discuss proof in two steps.
Step 1 : Construction of equivalent Mealy machine M, ,and
Step 2 : Outputs produced by both machines are equivalent.
Step 1{Construction of equivalent Mealy machine M,)
Let M, =(0,%,A,8,1",q,) whereallterms 0,5, A, 8, q, are same as for Moore machine and
A’ is defined as following :
Mg,a)= A8 (g, anforallg e Qand 4 ¢ 5

The first output produced by initial state of Moore machine is neglected and transition
sequences remain unchanged.
Step 2 : If x is the output symbol produced by initial state of Moore machine M,, and
I (w), T, (w) are outputs produced by Moore machine M, and equivalent Mealy machine A,
respectively for input string w, then

Ti(w) = xT,(w)
Or Output of Moore machine = x| | Output of Mealy machine
(The notation | | represents concatenation) .

If we delete the output symbolx from 7; (w) and supposeitis 7y (w) which is equivalentto

the output of Mealy machine. So we have,
I (w) = G(w)
Hence, Moore machine A/, and Mealy machine M, are equivalent.

Example 1 : Construct a Mealy machine equivalent to Moore machine M, given in following
transition table.

2.12 FORMAL LANGUAGES AND AUTOMATA THEORY

Inputs
0 1
Present Next State Next State
State (PS) {NS) (NS) Output
s 4 & 1
9 k! ' P 0
a 4 2 1
s 4, % 1
Solution : Let equivalent Mealy machine A, = (Q,2,A,8.4%,9,)
where
Lo Q={q¢.9,,9243}
2. %= {0,1}
3. A={01
4. 3 isdefined as following :
Forstate ¢4:4'(¢4.0) = A(8(40.0)) =2 (g;) =0
Aggd) = A(8(go.l)) = A{g) =1
Forstate ¢, : A" (¢, 0 = 2 (3(q;, 00 = A{gs) = 1
Mg, D) = A0 = Mg =1
Forstate g, : ' (¢,,0) = A (8 (g, 00 = A{g.) = T
Mg, D) = 2B (q,) =A(g) =0
Forstate ¢4:47(g,.0) = A(6(q;3.,8)) = A{gy) =1
Mgy) = 2B (g D) = dgy) =1
Transition table ;
Inputs
0 1
PS NS Output NS Output
~4q 4 0 % 1
9 g3 1 'y 1
a4, P 1 4 0
43 4q 1 43 1

FINITE STATE MACHINES

Transition diagram :

FIGURE: : Mealy Machine

Example 2 : Constructa Mealy machine equivalent to Moore machine A/ =(G.2A8,4.4,)
described in following transition table.

Inputs
] |
Present Next State Next State
State (PS) {(NS) (NS) Ontput
4y K q . g
0 % 1
) 9 4 Y
2 ' q g, O

Solution : Letequivalent Mealy machine M, = (0,5,A,6,4,q,) , Where

L 0={90.91.95.45}
2. T={01)
3. A= {01}
4.)’ 1sdefined as following :
For §tate 90:A(q4,0) = 2(5(q4,0)) = A(g3) = 0
Ago 1) = AUS{ge.1)) = Ag,) =1

2. 14 _ EORMAL LANGUAGES AND AUTOMATATHEORY

Forstate g,:A {g,,0) = A (8{(g,,0) = A{g) =1
Mgl =A@ (gD =2r(g) =0
Forstate g¢,:A'(g;.0) = A (0(q,.0) = Aigy) = 0
A gy D) = A (g 1) = Mgy} = 0
Forstate g, : A (5, 0) = A (8 (g5, 0) = 2 (g5) = 0
A'(gs1) = A((gs5:1)) = A(go) =0
5. Transition is same for both machines, and
6. ¢, isthe inmtjal state.

Transition table !
Inputs

H 1
P8 NS Qutput NS Output
45 4 0 9 1
4 4 1 4z 0
70 5 0 3 0
3 VE! 0 /A 0

Conversion of Mealy Machine to Moore Machine
Theorem : If M, =(Q,%,A,8,4.4,) isaMealy machine then there exists a Moore machine
M, equivalentto M.
Proof : We will discuss proofin two steps.
Step 1 : Construction of equivalent Moore machine M, ,and
Step 2 : Outputs produced by both machines are equivalent.
Step 1 : Construction of equivalent Moore machine M,
We define the set of states as ordered pair over O and A . There is also a change in transition
function and output fimction.
Let equivalent Moore machine M, = (Q'.£,4,6,4".40)>
where |
1. O ¢ @ x A istheset of states formed with ordered pair over O and 4,
2. v remains unchanged,

FINITE STATE MACHINES 2.15

3. A remains unchanged,
4. 5 isdefined as follows:
8" (g, bl.a) = [8(q,a) X (g,a)], where § and), are transition function and output
function of Mealy machine.
3. isthe output function of equivalent Moore machine which is dependent on present state
only and defined as follows :
AM(l[g.0D = b
6. 4, istheinitial state and defined as [g,,5,], where ¢, is the initial state of Mealy machine and
b, is any arbitrary symbol selected from output alphabet A .
Step 2 : Outputs of Mealy and Moore Machines
Suppose, Mealy machine M, enters states g,, ¢, ¢,...¢, On NPt @, a,, a;,....q, and
produces outputs b, b,, by, ... b, . then M, entersthestates (g5, 5,1, (715 51 (2,551 -2 (2,0 5,)
and produces outputs b, 4, ,, ... b, asdiscussed in Step 1. Hence, outputs produced by both
machines are equivalent.
Therefore, Mealy machine M, and Moore machine A, are equivalent.

Example 1 : Consider the Mealy machine shown in below figure. Construct an equivalent
Moore machine.

FIGURE : Mealy Machine
Solution : Let M, =(0,2,A8,4,9,) is a given Mealy machine and
M, =(Q".5,A.8",4",q,") betheequivalent Moore machine,
where
L @ < {l9e, #1140, YL 7M. 2] [92. 7L 1q,. 413 (Since, @' < O x A)
2. 3= {0,1)

2.18 FORMAL LANGUAGES AND AUTOMATA THEORY

3 * fk = {n9 y} E
. go'=[g.»]. where g, is the initial stateand y is the output symbol of Mealy machine,
5. § isdefinedas following:

Forinitial state{qg,, v] :
5’({616:})],8) - {5(9{) ,0),/1((]3 :0)} - {‘g} ,?’!]
5f(£q0:y}$1) = ié‘(QOJ):;"(QG 3)} = {an]
For state [g,, n} :
& ([g1, 11, 0) = 18 (4,00, 1 (a1, 01 = [41,)]
Sf(l g1 H],l) = Is(‘h 32}17“(‘3“1 A)}:{q 2 M}
For state Ig,, #n] :
8 ([g;, 71 0) = [8 (g5, 00, A (g, O)] = [44,7]
& ([QE’ i“i], i) = [5 (QRS 1) E A (Q’z» 1)] = 592, }’}
For state [¢,, ¥] :
8 ([gq1, ¥1 0 = [8 (g1, 0,2 (g, O] = lg35 ¥]
8 ([g1, ¥},) = 8 (g, 1 A (g, D] = [42, 7]
For state {g,, v}
8’ (IQb y]: 0) - [8 (QZo O)a /8 (‘32 :0}] = §QI.= H}
8 ([q2, ¥1, 1) = [8 (92, D, A (g2. D] = [,)]

(Note : We have considered only those states, which are reachable from initial state)

6. 3 isdefined as follows :

Alge-y]l=Y
A g nl = n
A gy, ml = n
Mgyl =y

Migy,yi=y

FINITE STATE MACHINES 2.17

Transition diagram :

FIGURE : Moore machine

Example 2 ; Construct a Moore machine equivalent to Mealy machine A, = (Q,5.A.6,4, do)
descriped in following iransition table

Inputs
0 1
PS NS Output NS Output
9, q, # a4, &
Qs QJ 22 Qz Zz
gg {II Z; Qz zz

Solution :

Let M, = (Q,%.A,6,4,q,) is given Mealy machineand M, = (Q',2.A"8",4",4,') bethe
equivalent Moore machine, where

3" Q!C_: {i‘;(}s2133[99922}9{QE5Z‘£35EQ]SZ233IQ2>ZZE:EQZ922]} (Sinces Qf e Q x A)
2. L=1{01

30 A = {5.5)

4. Letstarting state g,'=[q,,2;] Where g, is the initial state and z, is the output symbol of
Mealy machine,

2.18 FORMAL LANGUAGES AND AUTOMATA THEORY

5. & isdefinedas follows:

For initial state [g,,2, 15 '(199,2 1,0) = [8(g0.0%4g0,.0)] =1 ,2y]
8'(14, 2, 11) = [8(go 1440 D] = 192:41]

(Nete : Both states {g,,z,] and [g,, 7] arereachable from inifial state.}

For state [g;. 2,15 '([4,>71.0) = [6(4,.01 404,01 =1a1,7,]
§'([gy, 2, 1D = [8(g,14(gy.D] =144, 21]

For state [g,,2, 36 ([93,5 10) = [6(g,.0%4(¢,.0)] = {9::2]
5'(q2> 111D = [8(g2 10 Aa2.0) = 142 5:]

(Note : Both states {g,,2,] and [g,,7,] are reachable states.)

For state {q,,2, 16 '([(4: 2, 10) = 16(q;.0).4(4:,0)] =1g:,2:]
(g, 2, b1 = [8(q 10 Alg1 Dl =194, 71]

For state [q,,2, 18 ([42,2, 1,0) = [6(4,.0),4(2,,0)] =lg:, 2]

8'([45572 1) = [8(q5 1,44, D] = 142,22]
(Note : We have considered only those states, which are reachable from initial state.)
6. o isdefined asfollows:

Alaysz}= 5
Algpal= 2
A4z, 21 = 2
Algy.z 1= 2,
A1g2,22]1= 2,
Transition Table

Inputs
0 1
PS NS NS QOuiput
{490.%] (g, 21} 1927} Z
[g1521] [g1:2,} (92,21 |
142,71 fq.24] 19,,2,1 ¥4
91.2:] {q1.27,] [92:21] Z
{92=22] [‘:lezd [Qzazz] Zy

FINITE STATE MACHINES 2.19

2.8 EQUIVALENCE OF FSMs

"Two finite machines are said to be equivalent if and only if every input sequence yields identical
output sequence.

Example :
Consider the FSM A4, shown in figure (2) and FSM A4, shown in figure (b).

G

Figure (b)

Arethese two FSMs equivalent ?
Solution :
We check this. Consider the input strings and corresponding outputs as given following :

input string Cutput by A/, Qutput by A,
(H o1 00 00

(2) 010 001 001
(30101 0011 0011
4) 1000 - 011t 0111

{5) 10001 G111 01111

Now, we come to this conclusion that for each input sequence, outputs produced by both machines
are identical. So, these machines are equivalent. In other words, both machines do the same
task. But, 3/, hastwo states and M, has four states. So, some states of M, are doing the same

2.20 FORMAL LANGUAGES AND AUTOMATATHEORY

task i. e., producing identical outputs on certain input. Such states are known as equivalent states
and require extra resources when implemented.

Thus, our goal is to find the simplest and equivalent FSM with minimum number of states.

2.51 FSMMinimization

We minimize a FSM using the following method, which finds the equivalent states, and mexrges
these intto one state and finally construct the equivalent FSM by minimizing the number of states.

Method : Initially we assume that all pairs (g,,¢,) over states are non - equivalent states

Step 1 : Construct the transition table.

Step 2 : Repeat for each pair of non - equivalent states (g,.4,)
(&) Do g, and g, produce same output ?
(6) Do g, and g, reach the same states foreachinput g €Z?
(¢) If answers of (a) and (b) are YES, then ¢, and g,are equivalent states and
merge these two states into one state [g,,¢,] and replace the all occurrences of
g, and g, by [g,.g;] and mark these equivalent states.

Step 3 : Check the all - present states, if any redundancy is found, remove that.

Step 4 : Exit.
Example 1 : Consider the following transition table for FSM. Construct minimum state FSM.
Inputs
) 9 1
Present Next State Next State
State(PS) (NS) (NS} Output
4y o q, o
g, 4, % L
g, & o 1
g5 R s 1

FINITE STATE MACHINES

2.1

Solution :

Pairs formed over {Q(} ’gi Sq pd 5@3} arc (Q’e '_-QZ)’(QOS’?2)s(Q{)&gﬁ),(f}z 392)3 (Q} aq3)? (g2 5q3} .

Consider the pair (4,.9,) :

A(qg)= 0
g,)=1
Hence, g, and g, are not equivalent.

Consider the pair (g,.9,) !
Ago)=10 -
AMgy)=1
Hence, g, and g, are not equivalent

Consider the pair (¢,.4,) :
A¢o)= 0
Algs)=1
Hence, ¢, and ¢, are not equivalent

Consider the pair (g,.9,) :
Ag)=1
Agy)=1
Outputs are identical .
Now, consider the transition :
(q:,.9)=¢q,, 6{q,)= g,
5(@2 ’O)»:; YER 5(4231):" 4y

So, transitions from ¢, and ¢, are noton the same state for 0 input.

Hence, g, and ¢, are notequivalent
Consider the pair (4,,9,) :
Ag=1
A(gs)=1
Outputs are identical .

2,22 FORMAL LANGUAGES AND AUTOMATATHEORY

Now, consider the transition :

§(q1,0)=a,, 5(q1sD)= ¢,

5(qs.0)=q5, 8(¢3,1)= 4o
So, transitions from ¢, and ¢, are not on the same state for ¢ input.
Hence, g, and g, arenot equivalent.

Consider the pair (¢,.4.) :
A{q;)=1

Algy)=1

Quiputs are identical .
Now, consider the transition :

5(q,,0)= ¢35, 8(g2:.D)= 4

5(q:,0)= g5, 6(9;5.1)= 4
So, transitions from g, and g, are identical for inputs Oand 1.
Hence, ¢, and g, are equivalent states.

So, merging ¢,and g, into [g,.4,] to represent one state and replacing ¢, and ¢, by [4,.6,1,
we have following intermediate transition table 1.
Intermediate transition table 1

0 Inpufs
Prosent State Next State Next State
(PS) (NS) (NS) Output
- g, s 4 0
g [92.45] : s 1
{92:95) (92951 4, 1
(q:.4:) (42,451 | 4s 1

Applying Step 2 further on intermediate fransition table we see that g,.q,.q,] are equivalent
siates. '
So, replacing ¢, and {g,.95] by [4,.9,.9,], We have intermediate transition table 2.

FINITE STATE MACHINES

Intermediate transition table 2

0 Inputs ’
Present State Next State Next State
Ps) (NS) (NS) Output
-> 4, g, [91:95:95] 0
(41,9291 [41:92545] 4o 1
19142951 101:495:95) Ty 1
9192451 91925951 9 1
Applying Step 3 and removing redundancy, we have to delete two rows.
Now, we have the following final transitiontable 3 :
Transition table 3
0 Inputs 1
Present State Neoxt State Next State
(PS) (NS) ' {NS) Qutput
¥ 4, . 4, [QZ 2y] 0
[9)4,.45] 1919,-95} &y 1

Transition diagram :

Example 2 : Consider the following transition table of a Mealy machine. Construct minimum state
Mealy machine,

faputs
0 1
Ps NS Output N S Output
- q, o 0 g, 0
g, 9o 0 A
4, g, 0 2 1

2.24

FORMAL LANGUAGES AND AUTOMATATHEORY

Solution : Last two rows of transition table show that states ¢, and g, are equivalent states.
So, replacing these states by [g,.¢,], wehavethe following intermediate transition table.

Inputs
PS NS Qutput N S Quiput
=» gy qy {9:.42] 6
[g1:92] o 1919,]
[4:9,] o (915921 1
Deleting the last row, we have the following final transition table.
inputs
PS NS Qutput N 5 Cutput
-» Gy 0 [41:4] 0
191,421 o {g1,95] 1

FINITE STATE MACHINES 2.25

REVIEW QUESTIONS

Q1. Define and explain about Moore Machine.
Answer !

For Answer refer to Topic : 2.2, Page No: 2.3.

Q2. Consider the Moore machine shown in below figure.Construct the transition
table. What is the output for input 01010 9

Cutput = 0
Cutput = 1

FIGURE: Moor_e machine
Answer ;

For Answer refer to example - 1, Page No : 1.2.4.
Q3. Design a Moore machine, which outputs residue mod 3 for each binary input string
treated as a binary infeger,
Answer :
For Answer refer to exampie - 2, Page No ; 2.5.
Q4. Design a Moore machine which reads input from (0+1+2)* and outputs residue mod
5 of the input. Input is considered at base 3 and it is treated as ternary integer.
Answer : .
For Answer refer to example - 3, Page No : 2.6,
Q5. Define and explain about Mealy Machine .
Answer :

For Answer refer to Topic : 2.3, Page No : 2.7.

2.26 FORMAL LANGUAGES AND AUTOMATA THEORY

Q6. Consider the Mealy machine shown in below figure. Construct the transition table and find
the output for input 01010,

FIGURE : Mealy Machine
Answer :

For Answer refer to example - 1, Page No 1 2.8.
Q7. Constructa Mealy machine which reads input from {0, 1} and outputs EVEN of ODD according
to total number of 1's even or odd.
Answer ;
For Answer refer to example - 2 , Page No 1 2.9,
8. Design a Mealy machine which reads the input from {0+1)* and produces the foliowing outputs.
(i) if input ends in 101, outputis A,
(i) If input ends 110, the outputis B, and
(i) For other inputs, outputis C.
Answer ;
For Answer refer to example -3, Page No : 2.9.
Q9. Explain conversion of Moore Machine to Mealy Machine.
Answer :

For Answer refer to Theorer, Page No: 2.1

FINiTE STATE MACHINES 2. 27

Q10. Construct a Mealy machine equivalent to Moore machine 34, given in following transition

table.
Inpuis
0 i
Present Next State Next State
State (PS) {NS) (NS) Output
9, @ 2 1
0 4 % 0
% 9 %]
7 9o 0 1
Answer :

For Answer refer to example - 1, Page No 1 2.11,

Q11. Construct a Mealy machine equivalent to Moore machine M, = (Q,5,A,6,4,4,)
described in following transition table.

Inputs
0 |
Present Next State Next State
State (PS) (NS) (NS) Qutput
. Qo ‘h\ QI O
& 4 5] 1
7 K 2 0
i 0 s 0

Answer :

For Answer refer to example - 2, Page No : 2.13.
Q12. Explain conversion of mealy machine to moore machine.
Answer !

For Answer refer to Theorem , Page No : 2.14,

2.28 FORMAL LANGUAGES AND AUTOMATA THECORY.

Q13. Consider the Mealy machine shown in below figure. Construct an equivalent Moore

machine,

FIGURE : Mealy Machine

Answer : _
For Answer refer to example - 1, Page No 1 2.15.

Q14. Construct a Moore machine equivatent to Mealy machine M = (0.5,A,8,4,4,)
described in following transition table '

Inputs
0 1
PS NS Quiput N§ Qutput
s 4, & i, Z
q, g, 23 4, Z
Qz qi Z] q; 22

Answer :
For Answer refer to example - 2, Page No : 2.17.

Q15. Explain about equivalence of two FSMs with an example.

Answer :
For Answer refer to Topic : 2.5, Page No: 2.19.

(Q16. Explain procedure for FSM minimization.

Answer :
For Answer refer to Topic : 2.5.1, Page No:2.20.

FINITE STATE MACHINES 2.29

Q17. Consider the foliowing transition table for FSM. Construct minimum state ESM.

Inputs
, 0 1

Prosent Next State Next State

State{P8) (NS} (NS) Cutput
g, s g, 0
g g, 4. 1
g, 4, 9o 1
q, 4, 2, 1

Answer ;

For Answer refer to exampie - 1 , Page No : 2.20.

Q18. Consider the following transition table of a Mealy machine. Construct minimum state Mealy

machine,
mpuis
0 1
PS NS Output N S Output
- q, q, q, 0
g, a, 0 g, 1
g 4, 0 4, 1
Answer ;

For Answer refer to example - 2, Page No : 2.23.

2,30

FORMAL LANGUAGES AND AUTOMATA THEORY

OBJECTIVE TYPE QUESTIONS]

The automata in which the output depends only on the status of the machine is called:
{a) Moore machine (b) Mealy machine

(¢) Any finite automata (d) both (a) &(c)

Choose the correct statement

(a) A Mealy machine has no terminal state

(b) A Mealy machine generates no language as scuh

(¢) A Moore machine generates no language as such {d) All.

Choose the correct statement

(a) A Mealy machine has no terminal state

(b) A Mealy machine generates no language as such

(¢) A Moore machine generates no language as such

(DAl '

The major difference between a Moore and Mealy machine is
(a) Qutput of Moore depends on output only

(b) Qutput of Moore depends on present state and input

(¢) Output of Moore depends on state only

{d)None.
Choose the correct statements
(2) Any given Mealy machine has an equivalent Moore machine
{b) Moore and Mealy machines are finite state machines with output capability
(¢) Any given Moore machine has an equivalent Mealy machine
(dyAlL
The finite state machine in below figure isa
g/L1/0

—(°

(a) Kleene machine (b) Mealy machine
{¢) Moore machine {d)none of the above

FINITE STATE MACHINES 2.31

7. Mooremachineis :
(2) Automaton in which the output depends only on the state and the input.
(b) Automaton in which the output depends only on the states
(¢) Automaton in which the output depends only on the input
(d)None of the above,

ANSWER KEY

by 2@ 3 4@ 5@ b T

FORMAL LANGUAGES & AUTOMATA THEORY

UNIT- 11
REGULAR EXPRESSIONS

3

REGULAR LANGUAGES AND
FINITE AUTOMATA

After going through this chapter, you should be able to understand :

Regular sets and Regular Expressions
Identity Rules

Constructing FA for a given REs
Conversion of FAto REs

Pumping Lemma of Regular sets

Closure properties of Regular sets

3.1 REGULAR SETS

A special class of sets of words over S, called regular sets, is defined recursively as follows.
(Kleene proves that any set recognized by an FSM is regular. Conversely, every regular set can
be recognized by some FSM.)

1. Every finite set of words over S (including e, the empty set) is aregular set.

2. If Aand B are regular sets over S, then 4, p and AB are also regular.

3. IfSisaregularset over S, then so is its closure S*.

4. Nosetisregularunless it is obtained by a finite number of applications of definitions (1) to (3).

i.e., the class of regular sets over S is the smallest class containing all finite sets of words over S
and closed under union, concatenation and star operation.

Examples:

) Let X ={a,b}then the set of strings that contain both odd number of a's and b's is a

regular set.
i) Let £ ={0} then the setof strings {0,00,000 ,.....} isaregular set.

i) Let £ = {0,1} then the set of strings {01,10 } is aregular set.

3.2 FORMAL LANGUAGES AND AUTOMATATHEORY

3.2 REGULAR EXPRESSIONS

The languages accepted by FA are regular languages and these languages are easily described
by simple expressions called regular expressions. We have some algebraic notations to represent
the regular expressions.

Regular expressions are means to represent certain sets of strings in some algebraic
manner and regular expressions describe the language accepted by FA.

If 5 isanalphabet then regular expression(s) over this can be described by following rules.
1. Anysymbol from Z. and ¢ are regular expressions.

2. If # and », are two regular expressions then union of these represented as , U r, or
n + r, isalso aregular expression

3. If 5, and r, are two regular expressions then concatenation of these represented as ryr, is
also aregular expression.

4. TheKleene closure of a regular expression 7 is denoted by » * isalso a regular expression.

If ris a regular expression then () is alsoaregular expression.

6. The regular expressions obtained by applying rules 1 to 5 once or more than once are also
regular expressions.

o

Examples :

(1) If £ = {a,b},then

(a) aisaregular expression (Usingrule 1)
(b) bisaregularexpression (Usingrule 1)
(¢) @ + b isaregular expression (Using rule 2)
(d) »* isaregularexpression (Using rule 4)
(e) ap isarcgular expression (Usingrule 3)
(® ab + b+ isaregularexpression (Using rule 6)

(2) Find regular expression for the following

(a) A language consists of all the words over {a, b} endingin p .

(b) A language consists of all the words over {a, b} endingin pp.

(c) A language consists of all the words over {a, b} starting with and ending in b.

(d) A language consists ofall the words over {a, b} having pp asasubstring.

(¢) Alanguage consists ofall the words over {a, b} ending inaab.

Solution :Let £={a,b},and

Allthewordsover £ = {g a, b, aa, bb, ab, ba, aaa, }=X*or(a+b)*or(@awb)*

REGULAR LANGUAGES AND FINITEAUTOMATA 3.3

(a) Regularexpression for the given languageis (a + b) * b

(b) Regular expression for the given languageis (a + b) * bb

(c) Regularexpression for the given languageis a (a + b) * b

(d) Regular expression for the given language is (a + b) ¥ aa or aa(a + b) * or
(a+b)*bb(a+b)*

(e) Regularexpression forthe given languageis (a + b) * aab

The table below shows some examples of regular expressions and the language
corresponding to these regular expressions.

Regular expression Meaning

(at+b)* Set of strings of a's and b's of any length including the
NULL string.

(a+b)*abb Set of strings of a's and b's ending with the string abb.

ab(a+b)* Set of strings of a's and b's starting with the string ab.

(a+b)*aa(a+b)* Set of strings of a's and b's having a sub string aa.

a*b*c* Set of strings consisting of any number of a's (may be
empty string also) followed by any number of b's (may
include empty string) followed by any number of ¢'s
(may include empty string).

ab'e Set of strings consisting of at least one 'a' followed by
string consisting of at least one 'b' followed by string
consisting of at least one 'c'.

aa*bb*cc* Set of strings consisting of at least one 'a’ followed by
string consisting of at least one 'b' followed by string
consisting of at least one 'c'.

(a+b)*(at+bb) Set of strings of a's and b's ending with either a or bb.

(aa) * (bb)*b Set of strings consisting of even number of a's followed
by odd number of b's.

(0+1)*000 Set of strings of ('s and 1's ending with three consecutive
zeros(or ending with 000)

(11)* Set consisting of even number of 1's

TABLE

: Meaning of regular expressions

3.4 FORMAL LANGUAGES AND AUTOMATATHEORY

Example 1 : Obtain a regular expression to accept a language consisting of strings of a's and b's
of even length.

Solution :
String of a's and b's of even length can be obtained by the combination of the strings aa, ab, ba,
and bb. The language may even consist of an empty string denoted by ¢ . So, the regular expression
can be of the form

(aa+ab+ba+bb)*
The * closure includes the empty string,
Note : This regular expression can also be represented using set notation as

L(r)={(aa + ab + ba + bb)"|n=0}

Example 2 : Obtain a regular expression to accept a language consisting of strings of a's and b's
of odd length.

Solution :

String of a's and b's of odd length can be obtained by the combination of the strings aa, ab, ba

and bb followed by either a or b. So, the regular expression can be of the form
(aa+ab+batbb)* (a+b)

String of a's and b's of odd length can also be obtained by the combination of the strings aa, ab,

ba and bb preceded by either a or b. So, the regular expression can also be represented as
(at+b)(aat+ab+batbb)*

Note ; Even though these two expressions are seems to be different, the language corresponding

to those two expressions is same. So, a variety of regular expressions can be obtained for a

language and all are equivalent.

Example 3 : Obtain a regular expression such that L(r) = {W |W € {0,1}" with at least three

consecutive 0's }.
Solution :

An arbitrary string consisting of 0's and 1's can be represented by the regular expression.
(0+1)*

This arbitrary string can precede three consecutive zeros and can follow three consecutive zeros.

So, the regular expression can be written as

(0+1)*000(0+1)*
Note : Using the set notation the regular expression can be written as
L(r)={(0+1)"000 (0 +1)" m20and n=0}

REGULAR LANGUAGES AND FINITE AUTOMATA 3.5

Example 4 : Obtain a regular expression to accept strings of a's and b's ending with 'b’ and has
no substring aa.

Solution :

Note : The statement "strings of a's and b's ending with 'b' and has no substring aa" can be
restated as "string made up of either b or ab". Note that if we state something like this, the
substring aa will never occur in the string and the string ends with b So, the regular expression
can be of the form
(b+ab)*

But, because of * closure, even null string is also included. But, the string should end with'b'. So,
instead of * closure, we can use positive closure '+ So, the regular expression to accept strings
of a'sand b's ending with 'b' and has no substring aa can be written as

(b+ab)’

The above regular expression can also be written as
(b+ab) (b+ab)
Note : Using the set notation this regular expression can be written as
L(r)={(b + ab)"|n=1}

Example 5 : Obtain a regular expression to accept strings of 0's and 1's having no two consecutive
zeros.

Solution :

The first observation from the statement is that whenever a 0 occurs it should be followed by 1.
But, there is no restriction on the number of 1's. So, it is a string consisting of any combination of
I'sand 01's. So, the partial regular expression for this can be of the form

(1+01)*
No doubt that the above expression is correct. But, suppose the string ends with a 0. What to
do? For this, the string obtained from above regular expression may end with 0 or may end with
e (i.e., may not end with 0). So, the above regular expression can be written as

(1+01)°(0+ €)
Example 6 : Obtain a regular expression to accept strings of a's and b's of length <10.

Solution :
The regular expression for this can be written as

3.6 ‘ FORMAL LANGUAGES AND AUTOMATA THEORY

e+a+b+aa+ ab + ba + bb+.....+bbbbbbbbba + bbbbbbbbbb
But, using in a regular expression is not recommended and so we can write the above
expression as

(e+a+b)"

Example 7 : Obtain a regular expression to accept strings of a's and b's starting with ‘a’ and
ending with 'b".

Solution :

Strings of a's and b's of arbitrary length can be writtenas (a +5)*
But, this should start with 'a' and end with 'b'. So, the regular expression can be written as
a(a+b)*b

Hierarchy of Evaluation of Regular Expressions

We follow the following order when we evaluate a regular expression.

1. Parenthesis
2. Kleeneclosure
3. Concatenation
4. Union

Example 1: Consider the regular expression (a + b) * aab and describe the all words represented
by this.

Solution :
(a+b)*aab ={All wordsover {a,b}}aab (Evaluating (a + b) * first)
= {e,a,b,aa,bb,ab,ba,aaa ..} aab
= {All words over {a, b} endinginaab}

Example 2: Consider the regular expression (a * +b*) * and explain it.

Solution : We evaluate 4 * and p * firstthen (@ * +b%) *.
(a * +b*) * =(All the words over {a} +all the words over {b})*
= ({g a,aa,...} or { b,bb,...})*

REGULAR LANGUAGES AND FINITE AUTOMATA 3.7

=({ga,b,aa,bb,...})*

= {¢ a, b, aa, bb, ab, ba, aaa, bbb, abb, baa, aabb, ...}
= {All the words over {a, b} }

=(a+b)*

So, (a * +b*)* = (a + b) *

3.3 IDENTITIES FOR REs

The two regular expressions P and Q are equivalent (denoted as P = Q) if and only if P
represents the same set of strings as Q does. For showing this equivalence of regular expressions
we need to show some identities of regular expressions.

Let P, Q and R are regular expressions then the identity rules are as given below
1. eR=Re=R

2. €'=¢ eisnull string
3 @) =€ ¢ is empty string.
4. OR=Rop=1¢

5: é+=R=R

6. R+R=R

7§ RR¥*=R*R=R'

8. (R') =R

9. e+RR' =R’

10. (P+Q)R=PR+OR

11. (P+Q) =(P'Q)=(P" +Q')
12. R'(e+R)=(e+R)R' =R’

13. (R+e)' =R’

14. e+R =R’

15. (PQ)’ P= P(QP)'

16. RR+R=RR

3.3.1 Equivalence of two REs

Let us see one important theorem named Arden's Theorem which helps in checking the
equivalence of two regular expressions.

3.8 FORMAL LANGUAGES AND AUTOMATATHEORY

Arden’s Theorem : Let P and Q be the two regular expressions over the input set 5. The
regular expression R is given as

R=Q+RP
Which has a unique solutionas R = QP"

Proof : Let, P and Q are two regular expressions over the input string ¥ .
IfP does not contain e then there exists R such that
R=Q+RP sl
We will replace R by QP* in equation 1.
Consider R. H. S. of equation 1.
=Q+QP'P
=Q(e +P'P)
=0P" > e+R'R=R’
Thus R=0P
is proved. To prove that R = QP"is a unique solution, we will now replace L.H.S. of equation 1
by Q + RP. Then it becomes
Q+RP
But again R can be replaced by Q + RP.
Q+RP=Q+(Q+RP)P
=Q+QP+RP*
Again replace R by Q + RP.
=0+ QP+(Q+RP)P’
=Q+0P+QP' +RP’
Thus if we go on replacing R by Q + RP then we get,
Q+RP=Q+QP+QP +....+0OP + RP"
=Q(e+P+P*+...P)+ RP™
From equation 1,
R=Q(e+P+ P* +....+ P')+ RP™! e Z)
Where i>0
Consider equation 2,

R=Q(c+P+P* ...+ P')+ RP"
%
; R=QP' + RP"
Letwbeastnngoflengthl

REGULAR LANGUAGES AND FINITE AUTOMATA 3.9

In gp* has no string of less thani+ 1 length. Hence w is not in set gp+ . Hence R and QP*
represent the same set. Hence it is proved that

R =Q + RP has a unique solution.
R=QF".

Example 1 : Prove (1+00*D)+(1+00*D(0+10*D*(0+10*D)=0*1(0+10*])*
Solution : Let us solve L.H.S. first,

(1+00%1) + (14 00*1)(0+10*1)*(0+10*1)

We will take (1+00*1) asacommon factor

E +(0+10 *1)*0 +10 *1)
i

(e +R*R) where R=(0+10%1)
Asweknow, (e +R*R)=(e +RR*)=R*
S (1+00%1) ((0+ 10*1)*) out of this consider

1+00%*1

A+00%D) (g, 1o*1)»
)

Taking 1 as acommon factor
(e +00%)1(0+ 10 *1) *
Applying e +00% =0*
0*1(0+10%1)*
=R.H.S.
Hence the two regular expressions are equivalent.

Example 2 : Show that (0*1%)*=(0+1)*

Solution : Consider L. H. S.
=(0*1%)*
={€,0,00,1,11,111,01,10,.........}
= { any combination of 0's, any combination of 1's, any combination of
Oand 1,e}
Similarly,
R.H.S.
=(0+D*

3.10 FORMAL LANGUAGES AND AUTOMATA THEORY

={€,0,00,1,11,111,01,10,......... }

= { ,any combination of 0's, any combination of I's, any combination of
Oand 1}
Hence, L.H.S.=R.H.S. is proved.

3.4 RELATIONSHIP BETWEEN FA AND RE

There is a close relationship between a finite automata and the regular expression we can show
this relation in below figure.

Canbe | Regular Can be
Converted expression converted to
Deterministic NFA with
finite = moves
automata
Canbe Can be
converted converted to
NFA without
e moves

FIGURE : Relationship between FA and regular expression
The above figure shows that it is convenient to convert the regular expression to NEAwith e
moves. Let us see the theorem based on this conversion.

3.5 CONSTRUCTING FA FOR A GIVEN REs
Theorem :If » bearegular expression then there exists a NFAwith ¢ - moves, which accepts L(r).
Proof : First we will discuss the construction of NFA s with -moves for regular expression
r and then we prove that L(M) = L(r).

Let » be the regular expression over the alphabet 5 .

Construction of NFA with c - moves
Case 1:

@ r=2¢

REGULAR LANGUAGESAND FINITE AUTOMATA 3.1

NFA M = ({s, £}, { }8,5, {f}) asshowninFigurcl (a)
_ ‘ (No path from initial state s to
’ reach the final state £)

Figure 1 (a)

(@ r=¢€

NFA M = ({s},{ }, 8, s, {s}) asshowninFigure 1 (b)

@ (The initial state s is the final state)

Figure 1 (b)
(i) » = a,foralla €2,
NFA M = ({s, /}.%,8, s {f})
C a @ (One path is there from initial state s
to reach the final state fwith label a.)
Figure 1 (c)
Case 2: |r|=21

Let and r, be the two regular expressions over £,, £, and N, and N, are two NFA for
r, and r, respectively as shown in Figure 2 (a).

D+ O
(s) ™ @ L(V) = 1

Figure 2 (a) NFA for regular expression » and r,

3.12 FORMAL LANGUAGES AND AUTOMATATHEORY

Rule 1 : For constructing NFA js for r=r;+ny0rn U,
Letsand f are the starting state and final state respectively of 7.
Transition diagram of s is shown in Figure 2 (b).

Figure 2 (b) NFAfor regular expression r, + r,
L(M) =eL(N)eorel(N,)e
= L(N,) or L(N,) =norn
So,r=n+n
M = (0,5, U £,,8,s {f}), where Q contains all the states of N, and N,.

Rule 2 : For regular expression r = ryr,, NFA p7 is shown in Figure2 (c).

Figure 2 (c) NFA for regular expression »r,
The final state (s) of N, is merged with initial state of N, into one state [£S,] as shown
above in Figure2 (c).
L(M) = L(N,) followed L(N,)

= L(Ny) L(N,) = nn

So, r = nn

M = (0,3, U £,,8, 8, {F}), where O contains all the states of N, and N, such
that final state(s) of , is merged with initial state of N, .

REGULAR LANGUAGES AND FINITE AUTOMATA

3.13

Rule 3 : For regular expression r = r; ,NFA s is shown in Figure2 (d)

Figure 2 (d) NFAfor regular expression for 5’
L(M) = {&,L(N1),L(Ny) L(Ny),L(N)L(N})L(Ny),...}
= L(Ny) *
=n

M =({s, [}V0,,E,.0,5{f}) .where Q, isthe set of states of N,.

Rule 4 : For construction of NFAM for r = »*, Mis shown in Figure 2 (e).

Figure 2(e) NFA for regular expression for »*
L(M)={L(N,),L(N)L(N,),L(N)L(N,)L(N,), ...}
= TN =x
M =({s, f}v 0,.,2,,6,5{f}), where Q isthesetofstatesof N,.

Example 1 : Construct NFA for the regular expression a + ba *.

Solution : The regular expression
r = a+ba* canbebroken into », and r,as
r=a

r,=ba*

3.14 FORMAL LANGUAGES AND AUTOMATA THEORY

Let us draw the NFA for r,, which is very simple.

FIGURE 1: For r,

Now, we will go for #, = ba *, this can be broken into », and r, where r, =b and 7, =a*.Now
the case for concatenation will be applied. The NFA will look like this r, willbe shown in figure2.

FIGURE 2: For r,

and r, will be shown as

FIGURE 3 : For r,

The r, willbe r, =r,.r,

FIGURE 4 : For r,

REGULAR LANGUAGES AND FINITEAUTOMATA 3.15

Now, we will draw NFAfor » =7, +r, i.e. a+ba*

FIGURE5: NFAfor r=r, +r, i.€. g+ ba*
Example 2 : Construct NFAwith ¢ moves for the regular expression (0 1) *.

Solution : The NFA will be constructed step by step by breaking regular expression into small
regular expressions.

r=(n+n)
*
r=r

where r, =0, », =1

NFA for » will be Start o 0 @

NFA for r, will be Start @ 1

NFA for », will be

3.16 FORMAL LANGUAGES AND AUTOMATA THEORY

Example 3 : Construct NFA for the language having odd number of one's over theset ¥ = {1} .

Solution : In this problem language L is given, we have to first convertit to regular expression. The

r. e. for this Lis writenas re. =1 (11)~
The ris now written as

r=rr,
NFAfor n=1iIs
Start
Serr—

NFAfor r,=(11)*

€

= () — ()

€

REGULAR LANGUAGES AND FINITE AUTOMATA 3.17

The final NFA is

Example 4 : Construct NFA for ther. e. (01+ 2%0.

Solution : Letus design NFA for the regular expression by dividing the expression into smaller
units
r=(r+n)n
where r, =01, r, =2* and », =0
The NFA for » will be

The NFA for r, will be

3.18 FORMAL LANGUAGES AND AUTOMATA THEORY

The final NFA will be

Example 5 : Obtain an NFAwhich accepts strings of a's and b's starting with the string ab.
Solution : The regular expression corresponding to this languageisab (a+b) *.

Step 1 : The machine to accept 'a is shown below.

Step 2 : The machine to accept 'b' is shown below.

Step 3 : The machine to accept (a+b) is shown below.

REGULAR LANGUAGESAND FINITEAUTOMATA 3.19

Step 5 : The machine to accept ab is shown below.

Step 6 : The machine to accept ab (a + b)* is shown below .

FIGURE : To accept the language (ab (a+b)*)
Example 6: Obtain an NFA for the regular expression 4* 4+ 5° + ¢

Solution :

The machine corresponding the regular expression a* can be written as

€

% s e
4s @ @ @

€

The machine corresponding the regular expression b* can be written as

3.20 FORMAL LANGUAGES AND AUTOMATA THEORY

The machine corresponding the regular expression c* can be written as

FIGURE: To accept the language (a" + 5" +¢")
Example 7 : Obtain an NFA for the regular expression (a + b)*aa(a+b)*

Solution :

Step 1 : The machine to accept (a+b)is shownbelow.

REGULAR LANGUAGES AND FINITE AUTOMATA 3.21

Step 2 : The machine to accept (a+b)* is shown below.

FIGURE : NFAto accept (a+b)*aa(a+b)*

3.22 FORMAL LANGUAGES AND AUTOMATATHEORY

Example 8 : Construction of DFA equivalent to a regular expression (0+1)*(00+11)(0+1)*
and also find the reduced DFA.

Solution : Given regular expressionis (0+1)*(00+11)(0 +1)*

Step 1 : (Construction of transition graph for NFA without ¢ —moves).
First of all construct the transition graph with ¢ using the construction rules

Start (‘“) 0+1)* (00+l|)(0*l)‘
(@
Start . (0+1)* . (00+11) ‘ .(°+'>‘, .
_ ®

0+1) 0+l
Stm‘le c oo+ns 48 @

©

(d
FIGURE: NFA for the given Regular Expression

Transition graph for NEA without ¢ — movesis:

0,1

FIGURE : NFA without ¢ - moves

REGULAR LANGUAGES AND FINITEAUTOMATA

3.23

Step 2 : We construct the transition table for NFA as given in below table :

0 1
- 4, {4., 9.} {4, 9.}
q; {9,} .
4 2 {g,}
{a,} {g,}

FIGURE: NFA Transition Table

Step 3 : Construct DFA table for NFA.

Input
States 0 1
- {q.} {4, 45} {9, 9.}
{9, 9.} {9.9.9,} {9, 4.}
{4,593 {9,, 4.} {90:96+9 ¢}
{9,,9,.9,} {90,96:9}
(90, 99,} {90:96:9 1}

FIGURE: DFA Transition Table

The state diagram for the successor table is the required DFA as shown in below figure .

FIGURE: Required DFA for Regular expression (0+1)*(00+11)(0+1)*

3.24 FORMAL LANGUAGES AND AUTOMATA THEORY

As g, is the only final state of NFA, {4,,9,,9,} and {q,, q.. q,) are the final states of DFA.

Reduce the Number of States of above DFA

As the rows corresponding to { q,, 4., q,} and {4,, 4., q,}areidenticalanddelctcthelastrow
{qcn 9> q/} .

Input
_ States 0 1
=¥ {9, 9} {9..9.}
{q,- 4} {9.- 9.9} {g:5 9.}
{4., 9.} {4,, 9.} {90:96:9}
{9,, 9.9} {9.»9.,9,} {90:96:9 ¢}

FIGURE : Reduced Transition Table of DFA

The reduced DFA transition diagram s,

FIGURE : Reduced DFA for Regular Expression (0+1)*(00+11)(0+1) .
3.6 CONVERSION OF FATO RE

Theorem : If Lis accepted by a DFA, then L is denoted by a regular expression.

Proof: Let L be the set accepted by the DFA,
M =({q,,q3 yereee Qn}szsé"ql’F)

REGULAR LANGUAGES AND FINITEAUTOMATA 3.25

Let R’ denote the set of all strings x such that 5(g,,x) =¢, andif 5(q,,y) = ¢, forany y thatisa
prefix (initial segment) of x, other thanx or ¢, then 1<k, i.e., R, isthe setofall strings that take

the finite automaton from state g, to state ¢, without going through any state numbered higher
thank.

R’ can be defined recursively as,

R\=R'(RY)*RS ORY L. (1)
g =) 18/8(g,,0) =g, ifis]
" lald(g @) =g uia ifi=j

To show that for each i, j and k, there exists aregular expression R, denoting the language

R’ i.e., by applying induction onk.
Basis Step :
If (k=0), R, isafinite set of strings each of which is either ¢ ora single symbol.

°

r; can be expressed as,

Iy

r,=a +a+..4a(orr =a +a,+..+a+€if i = j)

Where, {a,, a,,...,a,} is the set of all symbols 'a' such that 3(g,,a) =g, .

If there are no such a's, then ¢ (or e inthe casei=j)servesas 7).
Induction :
The recursive formula for R', givenin(1) clearly involves only the regular expression operators.

By induction hypothesis, for each 1 and m, a regular expression 7. such that,
L r,ﬁ,’l)=R,",;,' ;

":j "(":k)(":k]) ("fu)*" &

Which completes the induction.

To complete proof observe that £ (M) = U Ry,

Since Rj, denotes the labels of all paths from ¢, to ¢, .
. L(M) is denoted by regular expression,
L(M)=r} +r, +r,

Where, F=1{q,.9,,...9,}

3.26 FORMAL LANGUAGES AND AUTOMATA THEORY

Example 1: Write equivalent regular expression for the following deterministic finite automaton.

Solution : A table is constructed as shown in below Table (K starts from 0 to number of states
in the design) and the entries are calculated according to theorem.

k=0 k=1

i 1+ e (1+e)l*
r 0 01*

rk 1 11*

T 0+ € 11*¥0+0+ €

. [lald(g,a)=q} i i#j
r! values are calculated as, ", = { {al8(g,a)=q,} i=]
'8 (g0,0) = g, not satisfying above condition
5(go1) = g, satisfying above conditionand e is default added because i =j condition.
ri=1+e
rS:6(q.,0) = q, satisfying condition (i]))
8(g,.1) = g, not satisfying condition
ra =0
r$:6(g,.0) = g, notsatisfying
5(gy,1) = g, satisfying condition
RS ()
r5:3(q,,0) = q, sansfymgcondmon
5(g,,1) = g, notsatisfying condition
sy =0+ e(i=))

r' : Where k = 1 we have to apply,
r=ryt () (7)o

m=rs () (1) v

REGULAR LANGUAGES AND FINITE AUTOMATA 3.27

Considering values from table (k=0),
n=+e)(+9*(+e v (l+ 9

Applying (e+rr*)=r*
=l e((+e)*(1+€) + g

=(l+e)(l+ e)* o+ eM)=1%
=(l+¢e1*
A=) () i)o ()
=(I+€) (I+ €)*0+0
=0((1+ &) (I+ €)*+ &) (vetrr¥=r¥)
=0(l+e)*
=01*

A=)) () o ()
=l (I+e)*(+e)+1
=11+ e)*(1+ e)+€)
=1 (l+€)*
=11%
n=(E)) (7))
=11+ €)*0+(0+ ©
=11*0+0+ ¢
Now the complete construction of regular expression is, in the given FA the starting state is g,

and final state ¢, . Write expressing from starting to all final states by taking k as total number of
states.

., is final term to construct regular expression.

= () b) © ()
=0 1*(11*0+0+ &) *(11*0+0+€) +01*
=0 1* (11*0+0+) * (11%*0+0+ &) + €)
=0 1* (11*0+0+) * (etr rt=r¥)

3.28 FORMAL LANGUAGES AND AUTOMATATHEORY

Example 2: Construct the regular expression for the finite automata given in below figure.

Solution :

In above table , we have calculated the valuesas 7, will indicate the set of all the input string from

g, to g,.1fi=jthenwe add < with the input string. If i# jand there is no path from g, to g,
thenweadd ¢.

Let us compute r;
r’ where i =1, j=1, k=0. There isno path from g, to g,buti=j.Soweadd ¢ inthek=0
columnat »; row.
Similad
7 = Theinputfrom g,t04,
ra=0
r> = No input from ¢,tog, and i # j
So we add ¢ over there.

rt =No input from g,t0 g, ,sincei=j.
We will add <.

Let us build the table when k = 1

REGULAR LANGUAGES AND FINITE AUTOMATA 3.29
k=1
Computation Regular
Expression
i rysn (BR) S e
i=1,j=1k=1 e
ro=n(m)*(r)+n
=e(e)*(e)+e
n =€
i=1,j=2k=1
s ra =n (r1)*(rs) + 72
n=€ (€)*(0)+0 0
=€.0+0
=0+0
=0
i=2,j=1Lk=1
) my = () * () + ()
=d(e)ye+¢ o
=g+¢ .. pe=¢
= ¢
i= 2, j = 2’ k=1
A ro=r ()2 () +78
=g () (O)+ e .
=¢+e

=€

3.30 FORMAL LANGUAGES AND AUTOMATATHEORY

Now let us compute for final state, which denotes the regular expression.
v} will be computed, because there are total 2 states and final state is g, whose start stateis g,.
ria= oo o)
=0(e)*(e)+0
=0+0
r! =0 whichisa final regular expression.

3.6.1 Arden's Method for Converting DFA to RE

As we have seen the Arden's theorem is useful for checking the equivalence of two regular
expressions, we will also see its use in conversion of DFA to RE.

Following algorithm is used to build the r. €. from given DFA.

1. Let g, betheinitial state.
2. Thereareq,, g,.93:945-Qn number of states. The final state may be some g, where j<n.
3. Let o, represents the transition from g, t0 q,.
4. Calculate g, such that
g,=0,4,
If g, is a start state

q,=C;4q;,+€
5. Similarly compute the final state which ultimately gives the regular expression .

Example 1 : Construct RE for the given DFA.
= QD>
Solution :

Since there is only one state in the finite automata let us solve for g, only.

@y =70+ gol+e
Go =g, (0+1)+€

REGULAR LANGUAGES AND FINITE AUTOMATA 3.31

=€.(0+1)* “R=0Q + RP
q,=(0+1)*

Since g, is afinal state, ¢, represents the final r. e. as
r=(0+1)*.

Example 2 : Construct RE for the given DFA.

Solution : Let usbuild the regular expression for each state.

9o =go0+€

G = ol + ¢l

9; =, 0+g,(0+1)
Since final states are g, and g, , we are interested in solving g, and g, only.
Letussee g, first

9o =€ +4,0

Whichis R=Q + R P equivalent so we can write
90 =<-(0)*
qO"'_:O‘l '..G.R=R

Substituting this value into g, , we will get

g =0%1+gq,1

g, =0*1(1)* “R=Q+RP= QP *
The regular expression is given by

F=qy+4q

=0*+0%1.1%

r=0%40*% | L. 1*=1

3.32 FORMAL LANGUAGES AND AUTOMATA THEORY

Example 3 : Construct RE for the DFA given in below figure.

Solution : Letus see the equations
g =ql+g,0+€
4, =40
g =gl
g3 =q0+q,1+43(0+1)

Let us solve g, first,
go=q,1+q,0+€
qo = 4,01+ gol0+€
Go = q5(01+10)+€ *R=Q+RP
gy =€(01+10)* = QP * where
go =(01+10)* R=q,0=¢€,P=(01+10)

Thus the regular expression will be
r=(01+10)*
Since g, is a final state, we are interested in g, only.

Example 4 : Find out the regular expression from given DFA.

REGULAR LANGUAGES AND FINITE AUTOMATA 3.33

Solution : Let us solve the DFA by writing the regular expression, for each state .
9o =qo0+g,0+€ -+ Initial state
g =14 q,1 +g,]
9,=¢,0

For getting ther. . we have to solve ¢, the final state.
g =1+ 4,01+ g,1
¢ =q,(1+01)+g,1

We will compare R = Q + R P with above equation, so R = 1,9 =¢qy1, P=(1+01) which
ultimately gets reduced to QP*,
G =gol(1+0D*
Substituting this value to g,
dp =4o0+q,0+ €
=g,0+4,00+ €
=qy0+g,(1(1+01)*)00+ ¢
9o =qy(0+1(1+01)*00)+ €
Again R=Q+RP
Where R=g;
O=¢
P=0+1(1+01)*00
Hence o =€.[0+ p(1+01)*.00)*
g0 =[0+1(1+01)*.00]* ~e .R=R

Example 5 : Construct the regular expression for following DFA.

Solution : We can get the regular expression from state q, - Let us see the equation of each
state.

3.34 FORMAL LANGUAGES AND AUTOMATATHEORY

dp =€
q,=q,1+q,0+q,1+4,0
q,=q,1+4q.0
Putting value of g, in g,
g =€.1+€.0+g,(0+1)
g, =(1+0)+g,(0+1)
Now solve g,

q,=(1+0) g,
=((1+0)) [(1+0) +4,(1+0)]
g, =(1+0). (14 0) +¢,(1+0) (1+0)

Here R=q,, 0=(1+0) (1+0), P=(1+0)(1+0)
g, =(1+0) A+0)[(1+0) 1+ 0)]* is aregular expression.

Example 6 : Give the regular expression of following DFA..

For given DFA we can write the equation
gy =qo0+¢q,0+€ san 1)
q,=4,1+41 - (2)

By theorem R = Q + RP we get R =QP*
R=g,
Q= 4l
P=1
g, =g,11*

REGULAR LANGUAGES AND FINITE AUTOMATA 3.35

As we know R* = RR" We can also write

gy =qol"

Let us put value of g, in equation (1)
90 =900+ go1"0+ &
Go=qo(0+170)+ &

Again we will apply R = Q + RP gives QP*
R =g,
QO=¢
P=0+10
go =€ (0+170)
go =(0+1°0) ~"Re=eR=R

Inthe given DFA, ¢, isafinal state the equation computed for state g, will be regular expression.
Hencer. e. for above DFAis
r.e. =(0+10)

3.7 REGULAR AND NON - REGULAR LANGUAGES

The languages accepted by finite automata are described by regular expressions. So to prove a
language is accepted by finite automata it is sufficient to prove the regular expression of that
language is accepted by finite automata.

The languages which are accepted by some finite automata are called regular languages. Here it
means that the FA accepts only the words of this language and does not accept any word
outside it.

1. Some of the words of the language are not accepted by FA.

(or)
2. All the words of the language are accepted in addition to that some extra strings are also
accepted.

All languages are either regular or non regular, none of the languages are both.

3.36 FORMAL LANGUAGES AND AUTOMATA THEORY

By looking at some of the languages we can say whether they are regular or not.

i) The languages whose words need some sort of comparison can never be regular.

Example : L={a" b',n20}

Here the number of a's must be equal to number of b's for each 'a’ we check the existence of b
which cannot be done using FA.

ii) Thelanguages whose words are in arithmetic progression and need no comparisons will be
regular.

Example: 1. L={a",n=1}

The words of this language are , aa, aaaa, aaaaaa,, a* which are in A.P with period 2.
Hence it is a regular language.
2.L={a", p is prime}
The words of this language are { a,aa,a0a ,aaaaaaa ,....a”} - We can see these words
are not in A.P. Hence it is not regular.

In this section, we will discuss how to prove that certain language is not regular
(non - regular) language. Pumping Lemma is a useful tool to prove that a certain language is not
regular language.

Since, the number of states inaFAis finite, say it is n (for some fixed value of n), and then itcan
recognize all the words of length less than n without any loop. Suppose, a regular language I has
infinite number of words and the length of these words may or may not be equal to n. So, how
can a FA recognize the L? A FA can recognize L having some loop(s) and whenever the length
of a given word is greater than or equal to n. So, we conclude that the loop in FA makes it able
to accept those strings, which have length greater than or equal 1o its total number of states.

When astring z has bigger length (greater than number of states in FA) then we break this string
into three parts, say u, v (v should not be null string), and w. Let FA has loop for v, and
z=uvwe L is accepted by FA.

So, z=wv'w fori=0,1, ... is also accepted by FA having some loop for v. This is the main
concept, used in Pumping Lemma.

REGULAR LANGUAGES AND FINITEAUTOMATA 3.37

Now, consider a regular language L =a*b and corresponding FA shown in below figure.

We see the list of accepted strings given below :
b, ab, aab, aaab,

Let u=€,v=a(y should notbe ¢),and w=bh, then 5 i.c. z= w'w forsomei=0,1,...1s
accepted by FA. Now, we have good base to discuss the Pumping Lemma.

3.8 Pumping Lemma for Regular Sets
Pumping Lemma is useful because

1. Itgives amethod for pumping (generating) many substrings from a given string. In other
words, we say, it provides means to break a given long input string into several substrings.

2. It gives necessary condition(s) to prove a set of strings is not regular.

Theorem :
Let M = (Q, I, 8, g, F) be a DFA having n states. M recognizes the language L. A long string

ze L suchthat |z|2n and z=uvw, where v #€ , then w'wel forj > 0.

Proof :
M recognizes 7 and 7, isaregularset. If 2 € L suchthat w=uvw. Here visoptionalin z
and |z| = n ,where » is the number of states in DFA.

Consider following DFA shown in below figure.

V=0844181:249%

- 9 D

u =alazu.a‘ w=ak,,,ahz...a,,

FIGURE : DFA forw'w

3.38 FORMAL LANGUAGES AND AUTOMATA THEORY

Let zZ= a,aza:,...a,a”,...aka,‘,,_l..am
Where u = a,a,a5..a,,v = a;,,...a; and w = a,,,...a,
The lengthof z is m and s > n.Itmeans, when m > n . itindicates that there is some loop in

twansition diagram of Af.Let v is the string obtained from the edges involved in Jooping as
shown in above figure.

Case 1: When z = uv®w = uw for ; — (,itmeans, ww is accepted and ¥» € L,

Case2: » — yv'w for j > 1.itmeans that control of DFA 7 goes j - times into the loop
with label v and ./, isaccepted by Af.

So, forall valuesof j > 0. z = yy'w isaccepted by M.
Hence, the statement of the theorem is proved.

Application of Pumping Lemma

Pumping Lemma is used to prové certain sets are not regular sets. This is done as follows :
Step 1 : We assume that given set is regular and accepted by DFA. pf having n states.
Step 2 : Choose astring z suchthat |z| > » and use Pumping Lemma to write z = uv'w

fori>0vee ,and [uw|<n.

Step 3 : Find asuitable integer ; suchthat 5y ¢ . and this contradicts our assumption made
in step 1 and hence L is not regular.

Example 1 : Provethat L = {a"b" :n = 1} is notregular.

Solution : In given language the number of ' 5 is equal to the number of p' 5. This isthe one
clue to find the contradiction.

Step 1 : Let 7 isregular and accepted by DFA ps with » states.

Step 2 : String ; ¢ such that |z|2 n and z=yy'we for i=0y¢e, and

|uw|5n.

REGULAR LANGUAGES AND FINITE AUTOMATA 3.39

Step 3 : Selecting substring v

a’ b7 a’b for p,q = 0
Let z=uv'w for; — ¢

Case1: When y, — 47, then
z=a" " Ppn
Numberof ¢'s = n — p,andnumberof p' 5 = p
Numberof ¢ s =Numberof p 5 ifand onlyif p = 0 and numberof 4 5 and p' 5 isnot
equal when p > 0.

So,for p >0, z = ypiwe L

Case 2: When y — 49, then

£=a"d"""

Numberof g' s = »,and numberof d's = n — ¢

Number of g' ¢ =Number of p' 5 ifand onlyif ¢ = 0 and number of 4 ¢ and p' s is not
equalwhen g > 0.

So,forg >0, z=w'welL.

Case 3: When y, — 47p7,then , _ 4n-rpr-g
Numberofa's = n - p,andnumberof b's = n - ¢.
Number of 4' s = Numberof p' 5 ifandonlyif g = p.

So,forp#q, z=wy'weL
Since, we get contradiction in all the cases, therefore 7, is not regular.

3.40 FORMAL LANGUAGES AND AUTOMATATHEORY

Example 2 : Showthat L ={a"b"|n20} is notregular.
Solution :

step 1 : Let Lis regular and n be the number of states in FA. Considerthe string , = a"5" .
Step 2 : Note that [z-=2n and is greater than n. So, we can split z into uvw such that juv|<n and

|v] = 1as shown below. . .

z = gaagaa , a M@_J
where |uj=n—1 and |v|=1 so that juv|=|u+{y|=n-1+1=n and [w|=n. According to pumping
lemma, ;' ey fori=0,1,2, ...

Step 3 : Ifiis 0i.e., vdoesnotappear and so the number of a's will be less than the number
of b's and so the string w does not contain some number of a's followed by same number of b's
(equal to that of a's)

Similarly, ifi =2, 3,..., thennumber of a's will be more than the number of b's and so number of
a's followed by equal number of b's does not exist. But, according to pumping lemma, n number
of a's should be followed by n number of b's which is a contradiction to the assumption that the
language is regular. So, the language Lis not regular.

Example 3: Prove that , = {4" :i>1} is not regular

Solution :
Method -1 (Using Pumping Lemma for regular sets)
In L, all words have their lengths in perfect square and this is the clue for proving non - regular.

Step 1 : Let L be regular and accepted by DFA M with n states.

Step 2 : String z ¢ 1 suchthat |zjzn and 2z =wv'we L fori=0,y¢e, let|z|=n*2n,and
|uw|< n, (n is the number of states).

Step 3 : Since, length of v can not exceed n (the number of states), it means, |vi<n.
Leti=2,80 7 =u’we L,and
Iz|4uvw!+|v}=n2+§v]
So, n? <lz|cn? +n (Since, |v|sn)
Or, n? <|z|gn’+n+(n+1) (Adding n + 1 to make perfect square)

REGULAR LANGUAGES AND FINITE AUTOMATA 3.4

Or, n? <)z |<(n+1)?

It means, the length of z is between ,* and (n+1)’, and is not a perfect square. Therefore,
Lisnotregular.

Method - I
For example,
zZ= ai:
Let i=2
z=aaaa
Z=UvVW
Assume uvw = aaaa
Take u=a
' v=aa
w=a

By pumping lemma, even if we pump v i.e. increase v then language should show the length as
perfect square .

uvw

=UV.VW

= aaaaaa

=length of ais not a perfect square
Thus the behaviour of the language is not regular, as after pumping something onto it does not
show the same property (being square for this example.)

Example 4 : Show that L = {ww"|w (0 +1)*} is not regular.
Solution :

Step 1 : Let L is regular and n be the number of states in FA. Consider the string

3.42 FORMAL L ANGUAGES AND AUTOMATA THEORY

Step 2 : Split the string z into uvw such that |uv [<» and |v [21 as shown below.

where |uj=n—1 and |v|=1 sothat (wv|={ut{y|=n-1+1=n which is true. According to pumping
lﬁm‘a, wwel fori=0, 1,2,

Step 3 : Ifiis 0i.e., vdoes not appear and so the number of 1's on the left of z will be less than
the number of 1's on the right of z and so the string is not in the form 7. So, wv'w ¢ L when
i=0. This is a contradiction to the assumption that the language is regular. S0, y,* isnot regular.

Example 5 : Showthat L={ 0|7 21} isregular.

Solution : This is a language length of string is always even.
ie. n=1; z=00
n=2; z=00 00 andsoon.
Let Z=UVW
z = 0 2n
|zj=2" =uw'w
If we add 2n to this string length.
lzl=4n =uv.vw
= even length of string.
Thus even after pumping 2n to the string we get the even length. So the language L is regular
language.

Example 6: Prove that L= { ww | win (a+ b)* } is not regular.
Solution : Prove the result by the method of contradiction.

Step 1 : Suppose L s regular, let'n' be the number of states in the automaton M accepting ‘L.

Step 2: Letus consider ww = a"b"a"b in L.|ww|=2(n+1)>n apply pumping lemma we write
ww=xyz with [y|= 0,| x| <n .

Step 3: Tofindisuchthat xy'z ¢ L for getting a contradiction. The stringy' can be in only one
of the following forms.

REGULAR LANGUAGES AND FINITE AUTOMATA 3.43

Case1:yhasnob'si.e., y=q¢" forsome g >1.

Case 2 : y has only one b.

We may note that y cannot have two b's. If so |y{=n +2.

But |y|<|xy| <n.

Incase 1, we can takei=0.

Then xy’z = xz is of the form g~p,p . Where m=n—k <n(or a’b a”b) x z cannot be written
inthe formuu with 4 € {a,b}" andso xz ¢ L.

In case 2 also. We can take i =0.

Then xy°z = xz has only oneb.

So xz ¢ Lasany element in L should have even number of a's and even number of b's.

Thus in both cases we get contradiction.
- Lisnotregular.

Example 7 : Show that L={a” | pis a prime number} is not regular.

Method - | :

Step 1: Let Lis regular and get a contradiction. Let n be the number of states in the FA
accepting L.

Step 2 : Let p be a prime number greater than n. Let z = a” . By pumping lemma, z can be

written as z = wvw, with |wv|<n and |v[>0. % v w are simply strings of a's. So, v=a" for
some z;>1 (and <n).

Step 3 : Leti=p+ 1. Then juv'w =l wvw |+ |v'™" |= p+(i - 1)m =p + pm . By pumping lemma,

wwelL - But jw'w|=p+ pm = p(1+m) and p(1+m) is nota prime. So uv'wer . Thisisa
contradiction. Thus Lis not regular.

Method - Il : Let us assume L is a regular and Pis a prime number.

z=a’
|z|=uvw i=1
Now consider i S where 1 =2
=uv.vw
Adding 1 to P we get,
P <|uvvw]|
P<P+1]

But P+ 1 is not a prime number. Hence what we have assumed becomes contradictory. Thus L
behaves as it is not a regular language.

3.44 FORMAL LANGUAGES AND AUTOMATA THEORY

Example 8 : Show that the language L ={a' b”|i>0} is notregular.

Solution : The set of strings accepted by language L is,
L = {abb, aabbbb, aaabbbbbb, aaaabbbbbbbb...}

Applying Pumping lemma for any of the strings above.

Take the string abb.

It is of the form wvw.

Where, |wv [€i|v[21]
To find i such that uw'we L
Take i =2 here, then
w'w = a(bb)b
=abbb
Hence uv'w=abbb ¢ L

Since abbb is not present in the strings of L.
. Lisnotregular.

Example 9 : Show that L = {0°|n is a perfect square } is not regular.

Solution :
Step 1 : Let Lis regular by Pumping lemma. Let n be number of states of FA accepting L.
Step2: Let ;=0 then |z|=n=2.
Therefore, we can write z=uvw ; Where |[wvisnfvE1.
Take any string of the language L= { 00, 0000, 000000 ... }
Take 0000 as string, hereu=0, v =0, w=00to find i such that w'w¢ L.
Take i =2 here, then
wv'w= 0(0)%00

= 00000
This string 00000 is not present in strings of language L. S0 uv'we L.

- Itis a contradiction.

3.9 PROPERTIES OF REGULAR SETS

Regular sets are closed under following properties.
1. Union
2. Concatenation

REGULAR LANGUAGES AND FINITEAUTOMATA 3.45

3
4,
5
6

-
.

Kleene Closure
Complementation

Transpose
Intersection

Union : If R and R, are two regular sets, then union of these denoted by R, + R, or
R, U R, isalso aregular set.

Proof : Let R and R, be recognized by NFA N, and N, respectively as shown in
Figurel(a) and Figurel(b).

FIGURE 1(b) NFA for regular set R,
We construct a new NFA N based on union of N, and N, asshown in Figure 1 (¢)

FIGURE 1(c) NFAfor N, + N,

Now,
L(N) = € L(N;) € + € I(N,) €
=€R,€ + €R,e
=R, +R,
Since, Nis FA, hence L(N) isaregular set (language). Therefore, R, + R, isaregularset.

3.46 FORMAL LANGUAGES AND AUTOMATA THEORY

2. Concatenation : If R and R, are two regular sets, then concatenation of these denoted
by R,R, isalso aregular set.
Proof : Let R, and R, be recognized by NFA N, and N, respectively as shown in
Figure 2(a) and Figure 2(b).

FIGURE 2(b) NFA for regular set R,
We construct anew NFA N based on concatenation of N, and N, as shownin Figure2(c).

FIGURE 2(c) NFA for regular set R R,

Now,
L(N) = Regular setaccepted by N, followed by regular set accepted by N, = RR,
Since, L(N) isaregular set, hence RR, is also a regular set.

3. Kleene Closure : If Risaregular set, then Kleene closure of this denoted by R*is also
aregular set.

Proof : Let R isaccepted by NFA » shownin Figure 3(a).

FIGURE 3(a) NFA for regular set R

REGULAR LANGUAGES AND FINITE AUTOMATA 3.47

We construct a new NFA based on NFA N as shown in Figure 3(b).

FIGURE 3(b) NFA for regular expression for R*
Now,

L(N)={¢,R,RR,RRR ..}
=r

Since, L(N) is aregular set, therefore R" is a regular set.

4. Complement : If y is a regular set on some alphabet 3, then complement of g is
denoted by ' — R or % isalsoa regular set.
Proof : Let g be accepted by NFA N = (Q,2,8,s,F). It means, L(N)=R.
N is shown in Figure 4(a).

FIGURE 4(a) NFA for regular set R
We construct anew NFA y'based on p asfollows :
(a) Change all final states to non-final states.

(b) Change all non-final states to final states.
N 'is shown in Figure 4(b)

FIGURE 4 (b) NFA

3.48 FORMAL LANGUAGES AND AUTOMATA THEORY

Now,
L(N")= {All the words which are not accepted by NFA N}
= { All the rejected words by NFA N}

=" -R
Since, L(N') isaregular set, therefore (" — R) isaregular set.

5. Transpose :If Risaregular set, then the transpose denoted by g7, isalso aregular set.
Proof : Let g beaccepted by NFA N = (Q,Z,8,s,F) asshown in Figure 5(a).

FIGURE 5 (a) NFA N for regular set R

If w isawordin R, then transpose (reverse) is denoted by 7 .
Let w = a,a,...a,

Then w” = a,a, ,...q

n“n-1-"

We constructanew N based on v using following rules :

(a) Change the all final states into non-final states and merge all these into one state and make it
(b) Change initial state to final state.
(c) Reverse the direction of all edges.

N is shown in Figure5 (b)

FIGURE 5(b) NFA N'for regular set g"

REGULAR LANGUAGESAND FINITE AUTOMATA 3.49

Let w = a,a,...a, beawordin g, then it is recognized by » and

wl = a,a,_,..a, isrecognized by zr as shown in Figure5 (b)

In general, we say that if a word + inR is accepted by n,andthen N accepts 4,7 .
Since, Z(N") is aregular set containing all w? ;itmeans, L(N')=R".
Thus, R” isaregular set.

6. Intersection : if R and R, are two regular sets over 3, then intersection of these
denoted by R, n R, isalsoaregular set.

Proof : By De Morgan's law for two sets 4 and B over R,
ANB=R*~(R*-A4)U (R*-B))

SO,R M Ry = 2% —((£*-R,))U(E * -R,))

Let R, = (Z*-R,) and R, =(Z*-R,)

So, R; and R, are regular sets as these are complement of R and R,.

Let R; = R, U R,

So, R; isaregular set because it is the union of two regular sets R, and R,.
Let R, = £ *-R,

So, R isaregular set because it is the complement of regular set R;.
Therefore, intersection of two regular sets is also regular set.

3.50 FORMAL LANGUAGES AND AUTOMATA THEORY

REVIEW QUESTIONS

Q1. What is regular set ? Explain with an example.
Answer :
For Answer refer to Topic : 3.1, PageNo:3.1.
Q2. What is regular expression ? Explain with an example.
Answer :
For Answer refer to Topic : 3.2, Page No : 3.2
Q3. Obtain a regular expression to accept a language consisting of strings of a's and b's
of even length.
Answer :
For Answer refer to example - 1 , Page No : 3.4.

Q4. Obtain a regular expression to accept a language consisting of strings of a's and b's
of odd length.

Answer :
For Answer refer to example - 2, Page No : 3.4.
Q5. Obtain a regular expression suchthat L(r) = (W | W €{0,1}" withat least three
consecutive 0's }.
Answer :

For Answer refer to example - 3 , Page No : 3.4.

Q6. Obtain a regular expression to accept strings of a's and b's ending with 'b' and has
no substring aa.
Answer :

For Answer refer to example - 4, Page No : 3.5.

Q7. Obtain aregular expression to accept strings of 0's and 1's having no two consecutive
Zeros.

Answer :

For Answer refer to example - 5 , Page No:3.5.

REGULAR LANGUAGES AND FINITE AUTOMATA 3.51

Q8. Obtain a regular expression to accept strings of a's and b's of length < |¢.
Answer :

For Answer refer to example - 6 , Page No ; 3.5.

Q9. Obtain a regular expression to accept strings of a's and b's starting with 'a' and
ending with 'b’.

Answer :
For Answer refer to example - 7, Page No : 3.6.
Q10. Explain equivalence of two REs using Arden's theorem.
Answer :
For Answer refer to Topic : 3.3.1, Page No : 3.7.
Q11. Prove (1+00*1)+(1+00*1)(0+10*1)*(0+10*1)=0*1(0+10*1)*
Answer :
For Answer refer to example - 1 , Page No : 3.9.
Q12. Show that (0*1*)*=(0+1)*
Answer !
For Answer refer to example - 2 , Page No : 3.9.
Ql3. If r be a regular expression then there exists a NFA with - moves, which accepts L(R).
Answer :
For Answer refer to Topic : 3.5 , Page No : 3.10.
Q14. Construct NFA for the regular expression a + ba *.
Answer :
For Answer refer to example - 1, Page No : 3.13.
Q15. Construct NFAwith « moves for the regular expression (0+1)*.
Answer :
For Answer refer to example - 2 , Page No : 3.15.
Q16. Construct NFAfor the language having odd number of one's over the set X = {I} .

Answer :

For Answer refer to example - 3 , Page No : 3.16.

3.52 FORMAL LANGUAGES AND AUTOMATA THEORY

Q17. Construct NFA for the r. e. (01+2%)0.
Answer :
For Answer refer to example - 4 , Page No : 3.17.
Q18. Obtain an NFA which accepts strings of a's and b's starting with the string ab.
Answer :
For Answer refer to example - 5 , Page No : 3.18.
Q19. Obtain an NFA for the regular expression 5" +p" + ¢’
Answer :
For Answer refer to example - 6 , Page No : 3.19.
QQ20. Obtain an NFA for the regular expression (a +b)*aa(a +b)*
Answer :

For Answer refer to example - 7, Page No : 3.20.

Q21. Construction of DFA equivalent to a regular expression (0+1)*(00+11)(0+1)* and also
find the reduced DFA.

Answer :

For Answer refer to example - 8 , Page No : 3.22.
Q22. If L is accepted by a DFA, then L is denoted by a regular expression.
Answer :

For Answer refer to Theorem , Page No : 3.24.

Q23. Write equivalent regular expression for the following deterministic finite automaton.

Answer :

For Answer refer to example - 1 , Page No : 3.26.

REGULAR LANGUAGES AND FINITE AUTOMATA

3.53

Q24. Construct the regular expression for the finite automata given in below figure.

Answer :

For Answer refer to example - 2 , Page No : 3.28,
Q25. Explain Arden's method for converting DFA to RE.
Answer :

For Answer refer to Topic : 3.6.1 , Page No : 3.30.
Q26. Construct RE for the given DFA.

Stat 7.\
0,1

For Answer refer to example - 1, Page No : 3.30.

Answer :

Q27. Construct RE for the given DFA.

0,1

Answer :

For Answer refer to example - 2 , Page No : 3.31.
Q28. Construct RE for the DFA given in below figure.

Answer :

For Answer refer to example - 3 , Page No : 3.32.

3.54 FORMAL LANGUAGES AND AUTOMATA THEORY

Q29. Find out the regular expression from given DFA.

Answer :

For Answer refer to example - 4 , Page No : 3.32.

Q30. Construct the regular expression for following DFA.

Answer :

For Answer refer to example - 5, Page No : 3.33.
Q31. Give the regular expression of following DFA..

Answer :

For Answer refer to example - 6 , Page No : 3.34.
Q32. State and prove Pumping Lemma for regular sets.
Answer :

For Answer refer to Theorem , Page No : 3.37.

Q33. Prove that I, = {a"b" :n = 1} is notregular.
Answer :

For Answer refer to example - 1 , Page No : 3.38.

REGULAR LANGUAGES AND FINITE AUTOMATA 3.55

Q34. Show that L ={a"b"|n=0} is not regular.
Answer :

For Answer refer to example - 2 , Page No : 3.40.
Q35. Prove that £ = 4" :i 1) is not regular .
Answer :

For Answer refer to example - 3 , Page No : 3.40.
Q36. Show that L = {ww"|w e(0+1)*} is not regular.
Answer :

For Answer refer to example - 4 , Page No : 3.41.
Q37. show that L={ 0*|n =1} is regular.

Answer :

For Answer refer to example - 5, Page No : 3.42.
Q38. Prove that L= {ww | win (a +b)* } is not regular.
Answer :

For Answer refer to example - 6 , Page No : 3.42,

Q39. show that L={a”| pisa prime number} is not regular.
Answer :

For Answer refer to example - 7, Page No : 3.43.
Q40. Show that the language L = {a'5* |i > 0} is not regular.
Answer :

For Answer refer to example - 8 , Page No : 3.44.
Q41. Show that L = {0"|n is a perfect square } is not regular.
Answer :

For Answer refer to example - 9, Page No : 3.44,
Q42. List and prove various closure properties of regular sets.

Answer :

For Answer refer to Topic : 3.9, Page No : 3.44.

3.56

FORMAL LANGUAGES AND AUTOMATATHEORY

OBJECTIVE TYPE QUESTIONS]

Find the regular expression for the set of all strings over {a,b} in which there arc atleast
two occurrences of b between any two occurrences of a.

(a) b*(aa+bb)*a* (b) (aa)*ba(bb)*

(c) b*+(b+abb)*ab* (d) None of the above.
(1+00*1)+(1+00* D0 +10*1) *(0+10*1) =?

(a) (0+10*1)*0*1 (b) (1+00*1)(0-+10*1)*

(c) 0*1(0+10*1)* d) None of the above.

The empty string is the string with:

(a) zero occurrence of symbol (b) non zero occurrence of symbol
(c) no occurrence of symbols (d) None of the above

Which of the following regular expressions over {0,1} denotes the set of all string not
containing 100 as a substring?

(@) 0*1010* (b) 0*(1*0)*
(€) 0*1*01* : (d) 0*(0+1)*

Find the regular expression for the set of all strings having atmost one pair of 0's or atmost
one pairof 1's

(@) (l+00)"'+(1+01)*(1+10)"-|{1+11)*+(0+10)‘11(0+10)*

(b) (1+01)* +(1+00)* (1+10) *+(1+10)*+(1+10) *11(0 +10) *

(€) (1+01)*+(1+01)*00(1 + 01) *+(0+10)* +(0+10) *11(0 + 10) *

(d) None of the above.

e+1*OID*A*01D)*)*=?

(@) 1*(011)* (b) 1+011)*

(c) 1*01*(1+011)* (d) None of the above.
Find the regular expression for the set of all strings of the form vw where a's occur in pairs
in v and b's occur in pairs in w.

(a) ((aa)* b)((bb)* a) (b) (aabaa)* (bb+a)*
(¢) (aa+b)*(bb+a)* (d) None of the above.

REGULAR LANGUAGES AND FINITE AUTOMATA

3.57

8.

10.

11.

12.

13.

14.

The intersection of (¢ +b)'a and b(a+b)' isgivenby

(@) ab(a+b) (b) a(a+b)'b

(€) (a+b) ab(a+b) d) ba+b) a
Which one s false

(a) (7'} i ’2)# = (rltrzt)t (b) (rc)a - ro

(¢) r,’ (n+n) = (n+n) (d) none.

The set of regular languages over a given alphabet set is not closed under
(a) Intersection (b)union

(c) Complement (d) none

Which of the following pairs are equivalent

(@) (@' +b) and (a+b) (b) (@by a andaba)’
(©) (a+b) and (@' +b") (d) None

The language of all words with at least2 a's can be described as
(@) " ab’a(a+b)"

(b) (a+8) a(a+b) (@+b)"

(©) (a+b) ab (a+b)*

(d)all

Which of the following pairs are not equivalent

(@) x* and x'x* (b) (ab)” and a'b"’
(©) x(xx)" and (xx)"x (d) 101)" and (10)'1

Let L may be language. Define even(w) as the string obtained by extracting from w the

letters in even numbered positions i.e., if w=aaa3a4

even(w) = ayay..... Corresponding to this, we can define a language :

even(Z) = { even(w) : w e L} then given L is regular, even(L)is
(a) is not context free

(b) context free

(c) must be regular

(d) may not be regular

3.58

FORMAL LANGUAGES AND AUTOMATATHEORY

15.

16.

17.

18.

19.

20.

21.

Which is the correct regular expression for the language : "Set of strings over alphabet
{a,b,c} containing at least | 'a' and at least 1 'b’

(a) c.a(a I c). bla+b+ c). - c‘b(b + c)‘ a(a+b+ c)‘
®) (@a+b+c) —(a" +b" +c")
(©) (@a+b+c)Tala+b+c)b+bla+b+c) alla+b+ec)

(d) none of these.

Which is the correct order of precedence of regular expression operators in increasing
order?

(a) "()'+1--- (b) ()r,‘ s+ (c) .,(),----,+ (d) (),‘ ,....,+
Which of the following is accepted by L(aa® + aba'b")
(a) abab (b) aaab (c) abba (d) None.

Let n and r,are regular expression and let | stands for equivalence in the sense of the
language generated, then

@ n(y+n) = +n) ®) (n? +m) =(n'r)’
©) () =n (d) None of these

Regular expression for the language, 1 = {w e {0,1}" : whas no pair of consecutive zeros}
8

@) r=@1+01)°(0+1") () r=("011°)" (0 + A)+1°(0+ 4)
(C) r=(1+01) (0 + 4) (d) all of these

For L(r) = {a,bb,aa,abb,ba,bbb........},r is given by

(@) r=(a+b) (a+bb) (b) r=(aa+b)a+b)

(¢) r=(a+bb) (d) r=a(a+bb)

Alanguage I = {awa :w e {a,b}"} 1S

(a) context sensitive (b) regular

(c) context free (d) none of these

REGULAR LANGUAGES AND FINITE AUTOMATA 3.59

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32,

33.

The value of the relation 4, pgp*is

@ g’ (®) ¢ ©e @R

The value of the relation (R*)" is

(a) e (b)R (c) z* (d) None of the above
The value of the relation ¢"is

(@ ¢ (b) = () e (d) None of the above
The value of the relation 4*is

(@ ¢ (b = () e (d) None of the above
The value of the relation R <is

(a) ¢ (b)R (c) e (d) None of the above
The value of the relation ¢ Ris

(a) & (bR (¢) e (d) None of the above
The value ofthe relation R$is

(a) ¢ (b)R (c) e (d) None of the above
The value of the relation ¢Ris

(@ ¢ (bR (©) e (d) None of the above
The value of the relation ¢+ R is

(@ ¢ (b)R (c) (d) None of the above
Which of the following identities for regular expression does not hold good?

@ @®R+8) =R +5" ®) (R'S"Y =(R+S)"

© +RH)=R" @ R"Y =r'

¢ (Kleene's closure of ¢)(¢ is the empty language over s) is equivalent to

@z (b) ¢ (c) e (d) none of these.
Give English description of the language of the regular expression : (1+ €)(00"1)" 0"
(a)alternating 1'sand 0's (b) 0's only in pairs

(¢) no pair of consecutive 1's (d) set of all strings of 0's and 1's containing

3.60

FORMAL LANGUAGES AND AUTOMATA THEORY

34,

35.

36.

37.

38.

39.

40.

41.

42,

Let L be the language {€,0,10}over {0,1} . Determine theset 7, T -

@) (o’ (b) 6
(c) same as the given set (d) None of the above

The regular expression representing the set of all strings over {x, y} ending with xx beginning
withy

@ s+ Opxen'w @ paen (@) xx(x+3)
How many strings of length tare in y*if 3 is an alphabet of cardinality r.
(a)r+t (b)tr (c) rt (d) None of the above

Which of the following doesn't hold?

(@) e+17(011)° (" (011)")" = e+17(0111")

®) @iy =qa1+11y’

© a+0) =1"01"’

(d) (1+00°1)+ (1 +00)0 +10') (0 +10'1) =010 +10"1)’
A solution to the equation R=0Q+ RPis

(@) R=PQ" (b) P=RQ’ (c) 9=rP" (d) rR=0P°

The value of the relation (P* +Q°)’is

(@) (P'0"y (b) 5* () P'o" (d) None of the above
The value of the relation (P + Q)" is

@ P+ ®) °Q"y ©) P'Q’ @5

The value of the relation R 4+ Ris

@ g ® ¢ (c) e (OR

The value of the relation pp*, cis |
@) g (b) ¢ (©) e (@R

REGULAR LANGUAGES AND FINITE AUTOMATA 3.61

43.

45,

47.

48.

In English language the set represented by ;%5 4 * is:

(a) Strings of a's followed by one b and strings of b's followed by one a.

(b) String containing single aand single b

(¢) Strings of a's followed by one b or strings of b's followed byonea.

(d) String containing single a or single b

The regular expression representing the set of all strings over {a,b} with three
consecutive b's

(3) (a +b) bbb(a+b) () (a+b) bbla+b)

(©) (a +b)bbb(a +b)" (d) (a+b) bbb(a+b)

For the following conditions find all the strings over the alphabet {a, } that satisfy the
condition, (i) no symbol is repeated in the string and (ii) the length of string is 3.

(a) No such string is possible (b) All possible strings of length 3
(c) Only single string ab (d) None of the above.
Find the true statement

(a) IfR is regular expression thenso is p*

(b) If R and S are regular expression then sois RU S
(c) If R and S are regular expression then so is R.S

(d) All of the above.
Find the true statement

(a) ¢represents empty word, e represents empty language.
(b) erepresents empty word, ¢ represents empty language
(¢) €,¢ represents empty word

(d) &,¢ represents empty language

Regular expression for the set {42, 55 48, . .1is:

(a) aa(aa)‘ (b) a(aaa).

(©) aa(aaaa)’ (@) aa(aaa)’

3.62 FORMAL LANGUAGES AND AUTOMATA THEORY

49. Letr and r,areregularexpression which of the following represent r +7

(@)

® =X*) © W)

(d) none.

50. 01" 4isrepresented by

(@ (°(0+0)) (b) (0(1" +0))
(©) ((01)" +0) (d) (0") +0)
51. Which of the following identities doesn't hold?
@ R R =R b) (RUS) =(R"S")

© R us"Y =(RS) d) (RUS) =R uS"Y

REGULAR LANGUAGES AND FINITE AUTOMATA 3.63

52

53.

54.

Let n and r,are regular expression which of the following represent »

Fq
ry

‘ .
T = & ()

()

(©

(d)none

Which of the following is false

@ pr'=R'R () R+R=R) &Y =¢r (d) none.

Let y and ryare regular expression which of the following represent 7,.r.

(@)

3.64

FORMAL LANGUAGES AND AUTOMATATHEORY

55.

56.

57.

58.

(®)
. n
G =y O () ()
(d) none
Which of the following are correct
(a)If ;*isregular then L is regular

(b)If I; U L, isregularand L;isregular, then L, is regular,

(¢)If I,L, isregularand I;is regular, then L, is regular.

(d)all

Which of the following is set of strings of the form vw where a's occur in pairsin v and b's
oceur in pairsin w.

(@) a" +(ab+a) (b) (aa+b) (bb+a)"

© a'b+b'a (d) a(a+b) ab

The set of all strings which are either strings of a's followed by one b or strings of b's
followed by one a.

(@) a’ +(ab+a) (b) (aa+b) (bb+a)

©) a'p+b'a (d) a(a+ b)‘ ab

Select which of following represent a set of all strings with a and ending with ab.
(@) a" +(ab+a) (b) (aa+b)" (bb+ a)

© a'b+b'a (d) a(a+b)'b

REGULAR LANGUAGES AND FINITE AUTOMATA 3.65

59.

60.

61.

62.

63.

65.

(a’ab+ba)' a" isequivalent to

(@) (a+b+ ab)° (b) (aba + bab).

(€) (a+ab+ba)' (d) (ab + ba + aba)

The two regular expressions are equivalenti.e., e +(a +) b(a + b)" =[a'b(a’ba’b) a’)

() True (b) False.

The setall strings of 0's and 1's such that every pair of adjacent 0's appears before any pair
of adjacent 1's

(@) (10 +0)" (epsilon+1)01 +01)' (epsilon+0)
(b) (10 +0)" (epsilon +1)(01 +1)" (epsilon + 0)
(€) (10+0)" (epsilon +1)" (epsilon +0)

(d) (100)" (epsilon +1)(01 + 1)" (epsilon + 0)
Write the regular expression for the following:
"The set of the strings over alphabet {a,b,c} containing at least one a and at least one b"

@) ca"(a+c) bla+b+c) e bb+e) alarb+e)
®) c'a’(@+c) bla+b+e)+c bb+e) a(a+b+ ¢)
(©) ca'(a+c) bla+b+c) cbb+c) a(a+b+c)

(d) c.a(a 4 c). bla+b+ c)* o+ c‘b(b + c). ala+b+ c)‘l

The reversal of the language L ={001,10,111} is ;

(a) {111,01,110} (b) {100,01,111}

(c) {111,10,001} (d) none

(L') equalto:

© ") @ ®) (d)none

The language generated by the regular expression (aa) (b)" b is
(b) g2np2nHl (@) (ab)*"p (c) none of these.

3.66

FORMAL LANGUAGES AND AUTOMATATHEORY

67.

68.

69.

70.

71.

1°011%)" (0+ e) isequivalent to

(b) (0+1)1+10)" (8 (1+01)’(0+€) (c)noneofthese
Which of the following identity doesn't hold?

(@) p+R=R+¢=R (®) ¢R=Ro=¢
() e+R=R+e=R (d) eR=Re=R

The language of all words that have at least one a and at least one bis
(@) (a+b) a(a+b) bla+b) +bb aa”

(b) (a+b) a(a+b) +(a+b) bla+b) a(a+b)

(©) (a+b) bla+b) a(a+b)'

(d) (a+b) a(a+b) b(a+b)’

Letaand b be two regular expressions then (o’ wp")" isequivalent to

(@) aub () (bua) @© @ ua)) (aub)*

If e, and e, are regular expressions denoting the languages L; and L, respectively, then
which is false?

(8) (e,)" isaregular expression denoting iy

(b) disnotaregular expression

(€) (¢;)(ep) isaregular expression denoting 41,
(d) (¢ Xe») isaregular expressiondenoting I, L L,

What is the regular expression defining the Janguage of all words with an odd number of b's
is

(a) a'b(a'ba'b)* ao

(b) ab+ (a*ba -+ b). ra
(C) a* (a'b)‘ a.

(d) None of these.

REGULAR LANGUAGES AND FINITEAUTOMATA 3.67

72.

73.

74.

75.

76.

(1+0)" represents

(a) Set of strings over 1 and 0.

(b) Set of strings starting with 1 and ending with 0
(c) Set of strings with equal number of 1'sand 0's
(d) Set of strings with even number of 1's and 0's

Whichoneis TRUE
(a) {1010}belongs to(10)" () 10)° =1" +0"
© o) =a"0"’ (@ qo) =170"

The R.E.=(10+01+11+00)" represents
(a) set of strings with at least one 0 and at least one 1

(b) set of strings with even length
(c) set of strings with equal O and 1's
(d) All strings over 0 and 1
Regular expression generated by the following automaton is given as
a,b
@.@ y
a
(@) (a+b)ab+ aa). (®) (a+b)ab+ aa).a
(¢) & +(a+b)(ab +aa)' a (d) e +(a + b)(ab +aa)’
Regular expression generated by the following automaton is given as:
a,b
b
@ ™
a
(@) (a+b)b+ab+aa)a (b) € +(a+b)(b + ab + aa)a

(€) (a+b)b+ab+aa) (d) € +(a+b)b +ab +aa) a

3.68

FORMAL LANGUAGES AND AUTOMATA THEORY

71.

78.

79.

80.

81.

82.

Regular expression corresponding to the finite automaton drawn below is given by

(d) (0+0(1+10)" 00)"

(b) (0 +0(¢1+01)' 00)"

(c) (0+1(0+10) 00)"

(@) (0+101+01) 00)

The regular expression (1+00"1) + (1+00'1)(0 +0+10")" (0 +101) isequivalentto

(@ a+00'1)0° 0Dy’ ®) 0"10+10"1)"
(©)(1+00°1)(0 +10")" (d) All of the above.
Which of the following is regular?

(a) String of odd number of zeroes.

(b) Strings of 0's, whose length is a prime number

(c) String of all palindromes made up of 0'sand 1's

(d) String of 0's whose length is a perfect square

The recognizing capability of NDFA and DFA

(a) must be same (b) may be different
(¢) must be different (d) none of the above.
The intersection of the two regular languages below:

Ly=(a+b) aand L, =b(a+b) isgivenby
(@)ab(a+b) () ala+b)'h
(©) (a+b)" ab(a+b)" d) ba+b)a

Which of the following regular expression over {0,1} denotes the set of all string not containing
100 as a substring?
* ¥ _ . &

(@ 0'qo+1)’ ®) o101 © 0'1010" (@ o0

REGULAR LANGUAGES AND FINITEAUTOMATA 3.69

83.

84,

85.

86.

The set all strings over {a, b} in which there are atleast two occurrences of b between the
two occurrences of a.

(a) a(bbabb)’a (b) 6" (b+ab)’b”

©) b’ +(b+abb) ab (d) None of the above.

Set of all strings over {0,1} having atmost one pair of 0's or atmost one pair of 1's.
@ 1"+ 010" +a"on oo’ ©On) + 00 +©°)+10)") 110 +10)°

(®) (1+01)" +(1+01)" 0001 +01)" +(0+10)" +(0+10)"11(0 +10)"

(©) 1+01)" +(0+10)"00(0 +10)" + (0 +10)" + (1 +01)" 111 + 01)"

(d) None of the above,
Regular expression corresponding to the FA given below is

(%)
n.n
(@)

(@) a" +(ab+a) (b) (ab +a)" (aa +b)

© (@b+ba) (d) None of the above.

Which of the following closure properties hold for regular sets?

(1) If L is regular, then ;7 isalso regular.

(ii) If L is regular setover y,then y* _ ; isalso regular over .

(iii) If X and Y are regular sets over 3, then X intersection Y is also regular over 3
(a) Only (1), (i) and (ii). (b) Only (i) and (iii)

(¢) Only (ii) (d) Only (i)

3.70

FORMAL LANGUAGES AND AUTOMATATHECRY

87.

88.

89.

90.

91.

92.

93.

94,

9s.

If L is an infinite regular language, then there exist some positive integer m such that any
string w e . whose length is m or greater can be decomposed into three part, xyz, where

(@) w=xy'zisalsoinL foralli=0,1,2,3,. (b) | xy|is less than or equal to m.
(©) |y>0.. , (d) All of the above.

If L is the language £(01°2), whatish(L):

(a) aba ab (b) aab(ba)' (©) gab’ba (d) a(ab) ba

The inverse homomorphism of a regular language is :

(a) not regular (b) regular (c)none

A homomorphism is a function from some alphabet 2, to strings in another alphabet £, . If

Y=,y €5, then h(x)=ha)ay)...ap), andif LcX, then h(L)={h(x)/xe L}.
Suppose / is the homomorphism from the alphabet {0,1,2} to the alphabet {a,b} defined
by: h(0)=a; k(1) = ab, and h(2)=ba Whatis h(0120)?

(a) ababa (b) abbbb (c) aaabb (d) aabba
If Lisregular, then {x: reverse (x)in L} is also regular

(a) May or may not be (b) Yes

(c) No (d) None of the above.
Finite state machines....... can recognize palindromes

(a) may not (b) may (c)can't (d) can
Pick the correct statement. The logic of Pumping lemma is a good example of
(a) Iteration (b) Recursion

(¢) The divide and conquer technique (d) The Pigeon hole principle
Which of the following is not regular

(a) String of zero whose length is prime

(b) String of zero whose length is perfect square
(c) Set of palindromes over 0 and 1

(d)All

Pumping lemma can be used

(a) Whether two languages are equivalent
(b) To check whether a language is regular
(c) To check whether a language is irregular
(d) None.

REGULAR LANGUAGES AND FINITEAUTOMATA 3.7

96.

97.

98.

99.

100.

101.

Let L be a regular language defined are y*. Then

(a) index (R;)may be zero (b) index (R,)is finite

(c) index (R;)may be infinite (d) None.

Let £ ={0,1} and R be the relation defined on y*by (x,y) € R iff | x| ~| y|=0dd ThenR
B

(a) not a right congruence (b) an equivalence relation

(c) aright congruences (d) none.

Let T = {a} and let] be the identify relationon y*. Let L = {€} U {a} U {aa}. Then index
(I)is

()3 (b) finite (c) infinite (d) None.
Is there a finite automation which accepts all palindromes over {a,b}?

(a) No,but it cannot be proved. (b) No, it can be proved.

(c) Yes, but it cannot be proved (d) Yes,it can be proved

Which of the following sets is regular?

(@) @™ [nz1 (b) {ww|we{a,b}'}

(€) {a? | p is a prime} (d {a’a iz

Which of the following languages cannot be produced by a regular grammar?
(1) {a"b" :n=0}
(i) {a"b* :k > n>0}

(iif) {ww® 1 we {a,b} "}

(a) (ii) and (iii) ® @)
(c) (i) and (ii) (d) All of the above.

3.72

FORMAL LANGUAGES AND AUTOMATA THEORY

‘I ANSWER KEY

]

|

1(c)
10 (d)
19.(d)

‘ 24.(c)
32(c)
40.(b)
48.(d)
56.(b)
64.(b)
71.(a)
79.(a)
87.(d)
95.(c)

2(b)
11(c)
20.(a)
25.(c)
33.(a)
41.(a)
49.(a)
57.(c)
65.(a)
72.(a)
80.(a)
88.(d)

3(a)
12 (b)
21.(a)
26.(b)
34.(b)
42 .(a)
50.(d)
58.(d)
66.(b)
73.(2a)
81.(d)
89.(b)

96.(b) 97.(a)

4 (d) 5() 6() 7(c) 8(d) 9(a)
13(b) 14(c) 15(c) 16(b) 17(a) 18(b)
2.(a) 23.c)

27.(b) 28.a) 29.a) 30.(b) 31.(a)

35(b) 36.c) 37.(a) 38.(d) 39.3)

43(c) 44.(d) 45(a) 46.d) 47.(b)

51(c) 52.d) 53.(d) S54.(a) 55.(¢)

59.c) 60.(a) 61.(b) 62.(d) 63.(b)

67.(c) 68.(a&b)69.(d) 70.(b)

74.0b) 75.(a) 76.(d) 77.(d) 78.b)
82.(a) 83..c) 84.(b) 85.b) 86.(a)

90.(d) 91.(b) R) 93.d) 94 (d)
98.(c) 99.(b) 100.(a) 101.(d)

e

4

REGULAR GRAMMARS

After going through this chapter, you should be able to understand :

« RegularGrammar
» Equivaience between Regular Grammar and FA
« [Interconversion

4.1 REGULAR GRAMMAR

Definition : The grammar G=(V, T, P, S) is said to be regular grammar iff the grammar is
right linear or left linear.
A grammar G is said to be right linear if all the productions are of the form

A->wB and/or A ->w where 4, BeV and 1y 7.

A grammar G is said to be left linear if all the productions are of the form
A->Bw and/or A ->w where 4, BeV and , 7.

Example 1: The grammar

S -» aaB | bbA | ¢

A - aAlb

B -» bBlale
is aright linear grammar. Note that ¢ and string of terminals can appear on RHS ofany production
and if non - terminal is present on R, H. S of any production, only one non - terminal should be
present and it has to be the right most symbol onR. H. S.
Example 2 :

The grammar

S —» Baa|Abb]| ¢

A s Aalb

B -» Bblale
isaleft linear grammar. Note that « and string of terminals can appear on RHS of any production
and if non - terminal is present on L. H. S of any production, only one non - terminal should be
present and it has to be the left mostsymbolonL. H. 8.

4.2 FORMAL LANGUAGES AND AUTOMATATHEORY

Example 3:
Consider the grammar
S > aA
A e aBib
B - Abla

In this grammar, each production is either left linear orright linear. But, the grammar is not either
Jeft lincar or right linear. Such type of grammar is called linear grammat. So, a grammar which has
at most one nion terminal on the right side of any production without restriction on the position of
this non - terminal (note the non - terminal can be leftmost or right most) is called linear
grammar.

Note f}zat the language generated from the regular grammar is called regular language. So, there
should be some relation between the regular grammar and the FA, since, the language accepted
by FA(is also regular language. So, we can constructa finite automaton given aregular grammar.

42 FAFROM REGULAR GRAMMAR

Theorem : LetG = {V, T, P, 8) be a right finear grammar. Then there exists a language L(G)
which is accepted by a FA, 1 ¢, the language generated from the regular grammar
is regular language.

Proof :Let V =(q,. g,,....) be the variables and the start state §=g, Let the productions in
the grammar be '
g = % gl
g, ~> X4,

g; = X34

dp "> Xpdn

Assume that the language 1(G) generated from these productions is w. Corresponding to each
production in the grammar we canhave acq ivalent transitions in the FA to accept the string w.
Afier accepting the string w, the FAwill be in the final state. The procedure to obtain FA from
these productions is given below : ' '

REGULAR GRAMMARS 4.3

Step 1: ¢, whichisthe start symbol in the grammar is the start state of FA.

Step 2 For cach production of the form

4 > wg,
the corresponding transition defined will be

S (g w)=4q,;
Step 3 : For each production of the form ¢, > w

the corresponding transition defined will be 8’ (g;, w) =g, ,where ¢, is the final state,

As the string w € L(G) is also accepted by FA, by applying the transitions obtained from
stepl through step3, the language is regular. So, the theorem is proved.

Example 1 : Construct a DFAto accept the language generated by the following grammar

S - 014
A — 10B
B - 04|11

Solution :

Note that for each production of the form A > wB, the corresponding transition will be
3(4, w)=B.Also, foreach production 4 —» w , we can introduce the transition 8(4,w) =¢,
where ¢, isthe final state. The transitions obtained from grammar G is shown using the following
table:

Productions Transitions

S - 0lA 8¢S, 01) =4
A —» 108 (4, 10)=8
B - 0A 8B, 0)=4
B > 1 8B, 1) =g,

The FA corresponding to the transitions obtained is shown below

4.4 FORMAL LANGUAGES AND AUTOMATATHEORY

So,the DFA M =((0. %, 8, g, 4) where
Q: {S, Aa Ba q‘f’ i QZSQ3} S 2::{0:1}

§ isas obtained from the above table.
The additional vertices introduced are ¢,,4,, ¢,

Example 2 : Construct a DFAto accept the language generated by the following grammar .

S —3 aA| ¢
A — aAlbB| ¢
B - bB| ¢

Soilution

Note that for each production of the form 4 wB, the corresponding transition will be
8(4,w) = B.Also, for each production 4 w, wecanintroduce the transition 8(4,w) = ¢,

where ¢ , isthe final state. The transitions obtained from grammar G is shown using the following |

table: -
Productions Transitions
S 3 al 8(S,a)= 4
S —> e ' S isthe final state
A - aA 8(4,a)= A
A ~» bB 8(A,by=B
A - P Aisthe final state
B - BB (B, b)= B
B - e B is the final state.

REGULAR GRAMMARS 4.5

Note : For cach transition of the form 4 —s¢, make A asthe ﬁna} state.
The FA corresponding to the transitions obtained is shown below :

So,the DFA A =(Q,3, 8, g,, A) where
Q={5, 4B}, L={aq b}
g, =S8, 4= {8, 4, B}
§1s as obtained from the above table .

4.3 REGULAR GRAMMAR FROM FA

Theorem : Let i1 =(0.3,5,9,,4) beafinite automaton, If L is the reguiar language accepted
by FA, then there exists a right linear grammar G = (V, T, P, $) so that L = L(G).

Proof : Let M =(Q,%,8,q9,,4) beafinite automata accepting L where
O = {qo,q1sq0} '
E={a,,ay,..a,}
Aregular grammar G= (V, T, P, 8) can be constructed where
V={4q09..9,}
=% '
S=gq,
The productions P from the transitions can be obtained as shown below ;
Step 1 : For each transition of the form 8(g,, @) =¢,

the corresponding production defined will be ¢, — ag,

Step 2: If ¢ e 4 i. e, if qis the final state in FA, then introduce the production
q &

Asthese productions are obtained from the transitions defined for FA, the language accepted by
FAis also accepted by the grammar,

4.5 FORMAL LANGUAGES AND AUTOMATATHEORY

Example 1 : Construct a regular grammar fromthe fbilowing FA.

Solution ; Note that for each transition of the form 8(4, a) = B, introduce the production

A ->aB .If g € 4 1.e., if qis the final state, introduce the production 4 — €. The productions
obtained from the transitions defined for FA is shown using the following table :

Transitions Productions

S, a)= 4 S - aA
(S, By = C S - BC
54, ay=C A - aC
84, bBy= B A o bB
8(B, a)= B B > B
(B, bY= B B —> bB
8(C, a) = C C > aC
3(C, b)=C C - bC

1t is very important to note that B is the final state. So, we have to introduce the production
B —>c. The grammar G corresponding to the productions obtained is shown below :

Grammar G=(V, T, P,S) where

V={8 A BC}

T={ab}

P={
S—>ad|bC
A—>»al|bB
B> aB|bBle
C—>aC|bC

3

S is the start symbol

RECGULAR GRAMMARS 4.7

Example 2 : Constructa reguiar grammar for the following FA.

Solution : Note that for each transition of the form (4, a) =B, introduce the production

A->aB.If g € 4 ie., if qis the final state, introduce the production 4 -ye. The productions
obtained from the transitions defined for FA is shown using the following table :

Transitions Productions

(S, a)= 4 S 3 aA
0(S,b)=8 S -3 bS
d(A,a)=4 A —> aA
&4 bHYy=RB A -~ bB
S(B,a)=A B - aA
8(B,b)=C B - bC
8C,ay=¢ C > aC
HC, BY=C C — hC

Itis very important to note that S, A and B are final states. So, we have to introduce the productions
S->¢, 4-»e and B-»e. The grammar G corresponding to the productions obtained is shown
below: '
Grammar G=(V, T, P, §) where
V = {§ABC}

T = fab}
P = { S -3 aA bS] e
Ao aA|bB]| ¢
B —> aA|bC| e
C -3 aC | bC
}
S isthe start symbol

Note : The FA in this problem accepts strings of s and b's except those containing the substring
abb. So, from the grammar G we can obtain a regular language which consists of strings of a's
and b's without the substring abb.

4.8 FORMAL LANGUAGES AND AUTOMATA THEORY

REVIEW QUESTIONS

Q1. What is reguiar grammax; ? Explain with examples.
Answer !

For Answer refer to Topic 4.1, Page No : 4.1,
Q2. Explain procedure to construct FA from regular grammar.
Answer :

For Answer refer to Topic : 4.2, Page No : 4.2.

Q3. Construct a DFAto accept the language generated by the following grammar

S - 014
4 —-» 108
B -» 0411

Answer !

For Answer refer to example - 1, Page No : 4.3,

Q4. Construct a DFA to accept the language generated by the following grammar .

s —y aA]| ¢
A -» aAlbBl e
B -y bB| ¢

Answer :

For Answer refer to example - 2, Page No : 4.4,
Q5. Explain procedure to obtain Regular grammar from FA:
Answer !

For Answer refer to Topic : 4.3 , Page No 1 4.5,

REGULAR GRAMMARS

- 4.9

Qé. Construct a regular grammar from the following FA.

Answer ;

For Answer refer to example - 1, Page No : 4.6.

Q7. Construct a regular grammar for the following FA.

Answer

For Answer refer to example - 2, Page No : 4.7,

FORMAL LANGUAGES AND AUTOMATA THEORY

OBJECTIVE TYPE QUESTIONS

)

The grammar generated by production rule $—aCa,C-yaCab is,

{a) a"a" n>0
(©) a"a" nz20
The language 1{0"1"2%3%}isa

(8) Recursively epumerable language.
{c) CSL

The set {4"b"} can be generated by the CFG
(a) S-—>ablasBlE

(€) § ~» aaSbb
Chomsky hicrarchy from type 0 to type 3 is:

(@) Lpy.Lesp Lor.Lre

(©) Lg»Lost>LerrsLRr
Which of the following relationship holds?

@) Lep clpe™lp

© Ler2ipe2ip

Which of the following staterents is true?
() Lpg < Lpe 2 Lest

(c) Lyg »Lpc = Lest

Which of the following is true?

(@) Ly < Lepr € Lost < Lt

(€} Lpr < Lerr € Lesy < Lo
Which of the following is true?
() Lyissubsetof Lopy

{c) Lyissubsetof Legy, -

b ¢"ba”.n >0
(d) None of the above

(b) Regular language
(d) CFL

(b) S > ab|aSh
(d) None of the above

(b) Lpg,LorpsLest Lry,

(d) Lyr.LoprsLesy-Lre

by Lep 2 Lpccip

(d) Lepp c Lpes < Lre

(b) LRE - LRC < LCSL

(d) Lpg < Lpe < Lesy

(0 Lpg € Legr © Lo € Lo

() Lyclesy clor el

(b) Ly issubsetof Logy
(d) None of the above.

REGULAR GRAMMARS _ ' 4. 11

10,

11.

12.

13.

14.

15,

16.

A grammar G = (¥, T, 8, P} is said to be context sensitive if all Productions are the form
x>y, where x ye(VuT)" and
@) |x|z] | (b) [xl=] yl (©|xldy] (d)Noneoftheabove

A grammar G = (V,:{’,S,P) iscalled unrestricted if all the productions are of the form y —» v,.
where, '

@ ueul)and ve(V UT)* ®) ue@uT) andve@ Ty
Queouny andveul) D ue@uTY aod ve ¥ UT)

The grammar that generates [= {a"b"c* |n 21,1 2 0}is,

() S—>aeh|Soec—ablcb (b) § e Sc,cablach

{¢) Any one of the two {d) None of the two,

The grammar that generates L = fwew |we{a,b})} is,

(a) S— aSa|bShlc (b} §— aSa|bSh|acal bch

(c) Any one of the two (d) None of the two.

Let G be the grammar S — a4, 4 > 4 bb|b , sentential forms of G are,

(@) adb®”, ab? where,n = 0 (®) adb®,ab? ™ where 120
(©) adb®,ab?"* vhere, n>1 (d) None of above.

Which of the following grammars can generate w = qabbb

(@) S—> AB,A~>BBla,B—> AB|b {b) $—> AB, A > adlu,B->bB|k
(c) Both (d) Noge.

The grammar having productions as 4 - p,where 4e¢ B,Be(V U X)is

(a) Type 3 (b)Type2 {c) Type 1 () Type 0
The grammar generated by production rules S—aSBCabe, cB->Be,aB->aB->aais

@ """ n<0 (b """ >0

(©) " 120 @) "B 0 >1

4,12

FORMAL LANGUAGES AND AUTOMATA THEGRY

17.

18.

19,

20,

21

22.

23.

24.

{f we have an algorithm to determine whether a given element belongs to a set X or not,
then this set is called

(a) Context-sensitive {(b) Complete
() Recursively Enumerable () Recursive

A production of the form 4 —» g whete 4€ ¥ and « e (V U) represents which type
of grammar? |

(&) Three (b) Two {c)One {d) Zero

What is the highest type number to grammar given by these production rules
S > ASB|d,A~> ad.

(a) Three (b) Two (¢)One (d) Zero
Theproductions: £ > E+E,E~>E~EE-E*EE->id
(a) Are unambiguous

(b) Generated an inherently ambiguous language
(¢) Generate an ambiguous language

{d)None.

The set L = {a"b"c"} is an example of grammar that is
(2) not context free (b) regular
(c) context free {d) none.
Choose the correct staterents

() some regular languages can't be generated by an CFG.

(b) Some non regular languages can't be generated by an CFG
(¢) Any regular language has not an equivalent CFG

(d) all languages can be generated by CFG

The grammar having productionas 4 — B, Where de(V VE)", Be(V v 3) is
{a) Type 3 (b) Type2 - {¢) Type 1 () Type O

The grammar having productionas 4 — xB, Where deV ,Be(V Ue)xe 2 is
{a) Type 3 (b) Type2 (c) Type 1 {d) Type §

REGULAR GRAMMARS 4.13

25.

26.

27,

28.

29.

30.

31,

32.

33

Chomsky Hierarchy is representation of

{a) Parsers (b) Grammars

{c) Machines : {d) None of these

Find language generated by the following grammar § —» 0S1] 0414 — 140110
(@ 10"M™0™" |m,n>1 (b) """ |n>1

©) "0 \mn2l {d) None of the above,
Type 2 grammar is also called

{8) context-free (b) Context-sensitive
{c)regular (d) none ofthese,

Which of the following language is context free?

@ "' in = j* (®) a ©@a% (D g
Which of the following language is regular?

(a)phi (b) g"p" (©) a"p"e"” (d) gmp"
A grammar is context-sensitive if all production of the form x> y are suchthat
(@ [x]>] | (b) |x[<lp| ©{xisiyl (@ |x}= yl
A recursive lenguage is also: :

(a) deterministic (b) CFL

{c) recursive enumerable (d) regular

Which of the following grammars can generate w = aqbbb
(8) §—> 4B, 4> BB|a,B > 4B|b

(b) §—> AB,A~>adia,B->bB|b

(c)Both

(d) None.

Which of the following is true for the language generated by § —> 4B 4 —> BB| a, B> AB|b
(a) aab belongs to this language.

(b} ab doesn't belongs to this language

(c) aabb belongs to this language

(d) aabbb doesn’t belongs to this language

4.14 FORMAL LANGUAGES AND AUTOMATATHEORY

34. Let Gy =(¥,5,8, /) berightlinear and G, = (V3,%,8;, Py) be left linear grammar and
assume that 1| and ¥, are disjoint. Consider, the linear grammar

G =({syulyul,, 5,8, P), where Sisnotin VU,
and P={s->sil8} VB b, then L(G)is

{a) notregular. (b) regular () leftlinear (d)rightlinear
35. Aregular grammar is
{a) Either leftlinear or right linear (b) Neither left linear nor right linear
(c) Right linear and not left lincar (d) Both lefit linear and right linear
36. Agmmmar G=(V,T,S,P)isrightlinearif '
(a) CF « context sensitive « right linear (b) 4> xBix;4,BeV and xe 7
(¢) None of these
37. Alanguage L is accepted by a finite automaton if and only if
(a) recursive. (b) context sensitive
(c) primitive recursive (d)right linear
38. The correctrelationshipis givenby
(a) right linear < CF <coniext sensitive. (b) context sensitive < CF < right linear
(¢) CF « context sensitive < right linear (d) CF < right linear < context sensitive
39, Which ofthe following canbe generated by: §— aS|dd,a->d|ccd -
(a) ababced (b) aabeed (c) abbbd {d) beeddd

40. Language generated by the grammar: § > 0415 [0{La—>14[1§{11s
(a) all strings of 0's and 1's that neither contain 2 consecutive 0's nor contains two
consecutive (s,
(b) all strings of 0's and 1's that does no contain 2 consecutive 1's
(¢)all strings of O'sand 1's that does no contain 2 consecutive 0's

(d)all strings of O'sand 1's
41. Consider the grammar: S —> adB| abc, 4> aa| ¢B —> bthen equivalent representation is
() § —>aBlabe, A—>aa,B->b (b) S —>aaaBlaBlabc, A—>aa,B—b

(¢) S ~» aqaaBlabc, A—>aa,B—>b (d) § >adBlabe, 4—>aa,B—>b

REGULAR GRAMMARS

4.15

42.

43.

44,

45.

46.

47,

48.

49.

Give the regular grammar that generates the following set : {(a)" |n 2 1}

(@) §— 5;82,81 > bS,5 > 085,85 > b (b) §— aSy,8; > 5S, S > aS,,8, —» b
(€} 8§ - a$;S,,8) ~> 58,5, —»b (d) None of the above.

Give the regular grammar that generates the following set: {a'5™¢” {1, m,n n> 1}
(8) 8 = a815y, Sy —> a8, 81 —> b8y, Sy — 5Sy, 55 = 65553, 83 — ¢

(b) g aS;,S; — aSi,S; w)sz,Sz - 552,82 —> CS3,S3 - C
(C) SU&JSS},S} UGS;SQ,SI Uf)Sz,Sg Usz,Sz UCS3,S3 e

.(d) None of the above.

Give the regular grammar that generates the following set: (52" 5 > 1)

(@) $—>a5%),8 ->a8,$, —»a (b) § > a8;,81 - aS,8 —>aSy, 8 > a
{¢) S—aS,S>a {d) None of the above,

Find language generated by the following grammar: § — 04]15]1]0 4 —>14]15]1
@) (xe {01}

(b) {x e 0,11" | x does not contain any two consecutive zeroes. }

{c) None of the above.

A production of the form 4 -» o0r 4 - gBrepresents which type of grammar?
(a) Three, {b) Two {c)One (d) Zero

What is the highest type number to grammar given by these production rules: § — a$| ab.

(&) Three. {b) Two {c) One (d) Zero

What is the highest type number to the grammar given by these production rules:

S~ da, 4> ¢} Ba, B> abe.

{a) Three. (b) Two {c) One (d) Zero
LG = {wwR :welia, b}*} is
(a) not context free (b) regular

{c) context free (d) none of these.

4.16 FORMAL LANGUAGES AND AUTOMATATHEORY

50. What language is generated by the following grammar G=(S, €,B}.{a.5}, P, S) where P is:
8 -» aBlbA
A-—»aasibdd
B->b|bS |aBB _
(2)All words consisting of one b more than the number of #s.
(b) All words consisting of equal numbers of a's and b's.
(c) All words consisting of one a more than the number of b's
{(d) None of the above
51. Find the false statement for k-equivalent states
(a)If gy and g, are k-equivalent forall £2 0, then they are equivalent.
(b) If ¢ and ¢y ave (k-+1)-equivalent then they are k-equivalent.

() Two states gy and g, are k-equivalent if both 8(qg;,x) and 8(qy,x) are final states or
both non-final states for all strings x of lengthk ormore.
(d) The k-equivalence is an equivalence relation.
$2. Thelanguage generated by the grammar S—>051[041, 4->140{101s

(a){im(}”:n,mai} (b) {Gmtﬂm,mai}
© {or 1" 0"1"um, 21 } (d) None of the above
53. The language genetated by the grammar S —>0s1] 041|, 4 >14[1 is
(&) {Omln:n>m >Z} () {9’”1”:n>m21}
{c) {{;mz”: m>n>1 } (d) None of the above
54. Match the language with the corresponding machine:
Language Machine
(i) Regular language (A) Non-deterministic pushdown automaton
(iy DCFL (B) Turing machine
(iil) CFL {(C) Deterministic pushdown automaton
(iv) Context-sensitive language (D) (Non)Deterministic finite-state acceptor
(v) Recursive language (E) Turing machine that halts

(vi) Recursively enumerable language (F) Linear-bounded automaton
(2) DACFEB (b)DCAFEB (©)DCABEF (d) DCFEAB

REGUILAR GRAMMARS

4.17

535.

When Minimizinga DFA M ={0,5.8, g, ¥) we tryto minimize
(a) The cardinality of the language I such that L=1(31)

(b) The cardinality of Q

{¢) The out-degree of each vertex.

{d) The length of the strings accepted by M
(e) None of the above.

ANSWERKEY

L) 24d) 3.(b)
11.(b) 12.(2) 13.(b)
214c) 224b) 23.d)

31.{e) 32.4c) 33.(a)
41.(b) 42.(b) 43.(a)
51.(c) 52.4¢) 53.(b)

4) 5.0) 6.d)
14.(b) 15.(b) 16.(b)
24.(a) 25.(b) 26.(a)
34.(b) 35.(3) 36.(b)
44.(b) 45.(b) 46.()
54.(b) 55.(b)

76) 8 9(d) 10.)
174d) 18.(b) 19.(b) 20.()
27.a) 28.(¢) 29.) 30.(c)
37.(d) 38.(3) 39.b) 40.(c)
47.(b) 48.(b) 49.(c) 50.(b)

FORMAL LANGUAGES & AUTOMATA THEORY

UNIT- 1
CONTEXT FREE GRAMMARS

S

CONTEXT FREE GRAMMARS

After going through this chapter, you should be able to understand :

Context free grammars

Left most and Rightmost derivation of strings
Derivation Trees

Ambiguity in CFGs

Minimization of CFGs

Normal Forms (CNF & GNF)

Pumping Lemma for CFLs

Enumeration properties of CFLs

5.1 CONTEXT FREE GRAMMARS

A grammar G = (V, T, P, S) issaidto be a CFG ifthe productions of G are of the form :

A-> o whereae(VuT)*
The right hand side of a CFG is not restricted and it may be null or a combination of variables and

terminals. The possible length of right hand sentential form ranges from Oto o ie., 0 < | 0| <.

As we know that a CFG has no context neither left nor right. This is why, it is known as

CONTEXT - FREE. Many programming languages have recursive structure that can be
defined by CFG's.

Example 1 : Considerthe grammar G = (V, T, P, S) having productions :
S —> aSa | bSh| €. Check the productions and find the language generated.

Solution :
Let P :S —> aSa (RHSisterminal variable terminal)
P, : § — bSh (RHSisterminal variable terminal)
P,: S —» e (RHSisnullstring)
Since, all productions are of the form 4 — a, where @ e(V U T') * ,hence G isaCFG

5.2 FORMAL LANGUAGES AND AUTOMATA THEORY

Language Generated :
§ = aSa or bSh

= a"Sa" or b"SH" (Using n step derivation)
= a"b"Sh"a" or b"a"Sa™b" (Using m step derivation)
= a"b"b"a" or b"a"q"d" (Using § — €)

So, I(G) = {ww": w €(a + b)*}

Example 2: LetG=(V. TP, S)whereV={S C}, T={a,b}
P={ S - aCa
C — aCa|b
} S is the start symbol
What is the language generated by this grammar ?

Solution : Consider the derivation

§ = aCa = aba(By applying the # and 3~ production)
So, the string aba & L(G)

Consider the derivation
S = aCa Byapplying S — aCa
=>aaCaa Byapplying C — aCa
= aaaCaaa Byapplying C - aCa
= a"Ca" Byapplying € —aCa ntimes
= a"ba" Byapplying -5

So, the language L accepted by the grammar G is L(G) = { a" ba” |n =1}

i. e., the language L derived from the grammar G is "The string consisting of n number of a's
followed by a'b' followed by n number of a's.

Example 3 : Whatis the language generated by the grammar
S§>04|¢

A—>18

Solution : The null string < can be obtained by applying the production § —¢ and the
derivation is shown below :

CONTEXT FREE GRAMMARS 5.3

S=e (By applying S— €)
Consider the derivation
§=04 (By applying §— 04)
= 018 (Byapplying 4->15)
= 0104 (Byapplying § 5 04)
= 01018 (Byapplying 4 -15)
= 0101 (Byapplying § —»¢)

So, alternatively applying the productions § — 0.4 and 4 — 15 and finally applying the production
§ — &, we get string consisting of only of 01's. So, both null string i.e., e and string consisting
01's can be generated from this grammar. So, the language generated by this grammar is

L={wlwe {01}*}or L = {(01)"|n=0}
Example 4 : Show that the language L ={ 2" b" |m#n} is context free.

Solution :

If it is possible to construct a CFG to generate this language then we say that the language is
context free. Let us construct the CFG for the language defined. Assume thatm=ni.e, m
number of a's should be followed by m number of b's. The CFG for this can be

S>aSble . (1)

But, L = {a" b" | m=n} means, a's should be followed by b's and number of a's should
not be equal to number ofb'si.e., m= n.
Let us see the different cases when m> nand whenm <n.

Case1:
m>n : This case occurs if the number of a's are more compared to number of b's. The extra
a's can be generated using the production

A->ad|a
and the extra a's generated from this production should be appended towards left of the string
generated from the production shown in production 1. This can be achieved by introducing one
more production.

S,—>AS
So, even though from S we get n number of a's followed by n number of b's since it is preceded
by a variable A from which we could generate extra a's, number of a's followed by number of b's
are different.

5.4 FORMAL LANGUAGES AND AUTOMATA THEORY

Case 2:
m<n: This case occurs if the number of b's are more compared to number of a's. The extra
b's can be generated using the production.
B— bB|b
and the extra b's generated from this production should be appended towards right of the string
generated from the production shown in production (1). This can be achieved by introducing one
more production
S,—>SB
The context free grammar G = (¥, T, P, S) where
V= {Sl,S,A,B} » I'={a,b}
P={
S,— AS|SB
S— aShble
A—> ad|a
B-> bB|b
} 8, isthe start symbol

generates the language L = { a™ b" | m# n }. Since a CFG exists for the language, the language is
context free.

Example 5 : Draw a CFG to generate a language consisting of equal number of a's and b's.

Solution : Note that initial production can be of the form
S —aB|bA
Ifthe first symbol is 'a', the second symbol should be anon - terminal from which we can obtain
either 'b' or one more 'a’ followed by two B's denoted by aBB ora 'b’ followed by S
denoted by bS.
Note that from all these symbols definitely we obtain equal number of a's and b's. The productions
corresponding to these can be of the form
B —blaBB|bS
On similar lines we can write A - productions as
A—ra|bAdd|aS
from which we obtain a'b' followed by either
1. 'a'or
2. a'b'followed by AA's denoted by bAA or
3. symbol 'a’ followed by S denoted by aS

CONTEXT FREE GRAMMARS 5.5

The context free grammar G =(V, T, P, S) where
V={S,A,B},T={a,b}
P={ 8 — aB| b4
A —>aS|bdd |a
B —> bS|aBB |b

} S isthe start symbol
generates the language consisting of equal number of a's and b's.

Example 6 : Construct CFG for the language L which has all the strings which are all
palindromes over 7' ={a,b}

Solution : Asweknow the strings are palindrome if they posses same alphabets from forward
as well as from backward.

For example the string "LIRIL" is palindrome because
LIRIL

> «

read read
Y
It is the same !
Since the language Lis over 7' ={a,b} . We want the production rules to be build a'sand b's. As
< can be the palindrome, a can be palindrome even b can be palindrome. So we can write the

production rules as

G=({S}, {a b}, P, S)
P canbe S>aSa
S—>bS8bh
S— a
S—> b
S— e
The string abaaba can be derived as
§ — aSa
- abSbha
— abaSaba
— aba eaba

— agba aba

which is a palindrome.

5.6 FORMAL LANGUAGES AND AUTOMATATHEORY

Example 7 : Obtain a CFG to generate integers .

Solution :

The sign of anumber can be '+ or-' or . The production for this can be written as -
S>+-|e

A number can be formed from any of the digits 0, 1,2,9. The production to obtain these

digits can be written as D—0]12]..)9

A number N can be recursively defined as follows .
1. AnumberNisadigitD (i.e, N->D)
2. The number N followed by digit D is also anumber (i.¢., N — ND)
The productions for this recursive definition can be written as
N->D
N — ND
An integer number [can be a number N or the sign S of a number followed by number N. The
production for this can be writtenas 7 — N| SN
So, the grammar G to obtain integer numbers can be writtenas G = (V, 7, P, S) where
V={D,S,N,1},T={+-0,1,2,...... 9}
p={
I - N|SN
N - D|ND
So+|-|e
D-0f1]2]... |9

}
S =Iwhich is the start symbol

Example 8 : Obtain the grammar to generate the language
L={0"1"2"\m>1and n=20}.
Solution : Inthe language I ={ 012"} ,ifn=0, the language I contains m number of 0's and
m number of 1's. The grammar for this can be of the form

A-> 01]041 -

Ifnis greater than zero, the language L should contain m number of 0's followed by m number of
I's followed by one or more 2's i. e., the language generated from the non - terminal A should be
followed by n number of 2's. So, the resulting productions can be written as

S 4|82
A— 01]041

CONTEXT FREE GRAMMARS 5.7

Thus, the grammar G to generate the language
L={0"12" | m=z1and nz 0}
can be written as G=(V, T, P, S) where
V={S§,A},T={0,1,2}
Fromig
S—> 4|52
A—>01}041
} S is the start symbol

Example 9 : Obtain a grammar to generate the language L = {0" 1" |[n=0} .

Solution :

Note : Ttisclear from the language that total number of 1's will be one more than the total number
of 0's and all 0's precede all 1's. So, first let us generate the string 0" 1" and add the digit | attheend
of this string.

The recursive definition to generate the string 0" 1" can be written as

A—041l|e

Ifthe production 4 -»041 is applied ntimes we get the sentential form as shown below.
A=041=00411=> ... 0" 41"

Finally if we apply the production
A—>e

the derivation starting from the start symbol A will be of the form
A=041= 00411 = 041" =01

Thus, using these productions we get the string 0" 1" . But, we should get the string 0" 1" i.e.,an
extra | should be placed at the end. This can be achieved by using the production
S— Al

Note that from A we get string 0" 1” and 1 is appended at the end resulting in the string 0" 1"*".
So, the final grammar G to generate the language L = { 0"1""'|n >0} will be G=(V,T,2,8)

where V={SA},T= {01}
P= {
S » Al
A—)OAlle

} S isthe start symbol

5.8 FORMAL LANGUAGES AND AUTOMATA THEORY

Example 10 : Obtain the grammar to generate the language
L ={w|n,(w) = n,(w)}

Solution :

Note: n (w) = n,(w) means, number of a's in the string w should be equal to number of b's in
the string w. To get equal number of a's and b's, we know that there are three cases :
1. There are no a's and b's present in the string w .
2. The symbol 'a' can be followed by the symbol 'b'
3. The symbol 'b' can be followed by the symbol a'
The corresponding productions for these three cases can be written as
S—>e
S aSh
S— bSa
Using these productions the strings of the form ¢, ab, ba, abab, baba etc., can be generated.
But, the stirngs such as abba, baab, etc., where the string starts and ends with the same symbol,
can not be generated from these productions (even though they are valid strings).
So, to obtain in the producitons to generate such strings, let us divide the string into two substrings.
For example, let us take the string 'abba’. This string can be split into two substrings 'ab' and 'ba.
The substring 'ab' can be generated from S and the derivation is shown below :

S = aSb (Byapplying § — aSb)
= ab (Byapplying § > &)
Similarly, the substring 'ba’ can be generated from S and the derivation is shown below :
S = bSa (Byapplying § — bSa)
= ba (Byapplying § >¢)

1. €., the first sub string 'ab' can be generated from S as shown in the first derivation and the
second sub string 'ba’ can also be generated from S as shown in second derivation.
So, to get the string 'abba’ from S, perform the derivation in reverse order as shown below :

abba
A

! v
S S
g vl
So, to get a string such that it starts and ends with the same symbol, the production to be used is
A

CONTEXT FREE GRAMMARS

5.9

So, the final grammar to generate the language L= { w|n,(w)=n, (w)} isG=(V,T,P,S)

where

A%
p

{S} , T ={ab}
{ S>¢€

S— aSh

S— bSa

S— S8
} S isthe start symbol

5.2 LEFTMOST AND RIGHTMOST DERIVATIONS

Leftmost derivation :

fG=W,T,P,S) isaCFGand w € L(G) then a derivation S =>w is called leftmost

derivation if and only if all steps involved in derivation have leftmost variable replacement only.

Rightmost derivation :

IfG=W,T,P,S) isaCFGand w € L(G),thenaderivation S =>w is called rightmost
derivation ifand only if all steps involved in derivation have rightmost variable replacement only.

Example 1 : Consider the grammar § — S + S| § * S|a|b. Find lefimost and rightmost
derivations forstring w = g * g + b.

Solution :

Leftmostderivation for v = g * g + b

S-—?S‘S
=a*§

L
:L>a*S+S
=a*a+ S
L

=a*a+b
L

(Usings —» 5*8§)

(The first left hand symbol isa, sousing § — a)
(Using § —» § + §,inordertoget g + p)
(Second symbol from the leftisa, sousing § — a)
(The last symbol from the leftis b, sousing § — »)

5.10 FORMAL LANGUAGES AND AUTOMATA THEORY

Rightmost derivation for w = g * g + »
o (Using s —» §*5)
=8*S5+5 (Since, inthe above sentential form second symbol from the right is * so,

we can not use S — alb. Therefore, weuse § — § + §)
28*85+b (Usings —» 5)
?S*a&b (Using § - a)

:’?a*a+b (Using S — a)

Example 2 : ConsideraCFG S — b4|aB, 4 — aS|addia, B > bS|aBB|b . Find
leftmost and rightmost derivations for v = gaabbabbba -

Solution :
Leftmost derivation for y - gaabbabbba :

S = aB (Using § — aB to generate first symbol of w)
= aaBB (Since, second symbol is a,soweuse B —» aBB)
=> gaaBBB (Since, third symbol is a,soweuse B — aBB)
=> aaabBB (Since fourth symbol is b, soweuse B — 5)
=> aaabbB (Since, fifthsymbolis b,soweuse B —» b)
=> aaabbaBB (Since, sixth symbol isa, soweuse B — aBRB)
= aaabbabB (Since, seventh symbol is b,soweuse B — b)
= aaabbabbS (Since, eighth symbolis b, soweuse B — bS)
= aaabbabbbA (Since, ninth symbol is b, soweuse § —» hA4)
= aaabbabbba (Since, the tenth symbolisa,sousing 4 — a)

Rightmost derivation for y = guabbabbba
S = aB (Using § — aB to generate first symbol of w)

- aaBB(We need a as the rightmost symbol and second symbol from the left side, so we
use B — aBB)

= aaBbS (Weneed aas rightmost symbol and this is obtained from Aonly, weuse B — 5S)
= aaBbbA (Using § — b4)

=> aaBbba (Using 4 — a)

=> aaaBBbba (We need b as the fourth symbol from the right)

= aaaBbbba (Using B - b)

= aaabShbba (Usitg B — bS)

CONTEXT FREE GRAMMARS 5.11

— aaabbAbbba (Using § — b4)
= aaabbabbba (Using 4 —» a)

5.3 DERIVATION TREES

Let G=(V, T, P, S) isaCFG. Each production of G is represented with a tree satisfying the
following conditions:

1. If 4 > o,0,0,...0, isaproduction in G, then 4 becomes the parent of nodes labeled

oy, 05 O3, - . . O, , and
2. The collection of children from left to right yields a,a,0t5. .. o,

Example : ConsideraCFG § — § + §|S * S|a| b and construct the derivation trees
for all productions.

Solution :
For the produclionE:‘>
S—=>S+8 ®/
Figure (a)
For the production l:> .
5> §*8 ®/

Figure (b)

For the production d For the production :>
S—>a S—>b °

Figure (c) Figure (d)

5.12 FORMAL LANGUAGES ANDAUTOMATATHEORY

If w € L(G) thenitis represented by a tree called derivation tree or parse tree satisfying the

following conditions :

1. Theroothas label g (the starting symbol),

2. The all internal vertices (or nodes) are labeled with variables,

3. The leaves or terminal nodes are labeled with e or terminal symbols,

4. If 4 » a,0,0,...a, isaproductionin G, then 4 becomes the parent of nodes labeled
O, Oy, Oy, ... O, , and

5. The collection of leaves from left to right yields the string .

Example 1 : Considerthe grammar § — § + S| S * §|a| b. Construct derivation tree for
Sting w =a*bh + a -

Solution : The derivation tree or parse tree is shown in below figure .
Leftmost derivationfor w = g% 4 + o :

§S=5*s (Usings » §*5) L__:> / I \CS)

= g * § (Thefirstleft hand symbol isa, sousing § — g)

=a*S+85(Usings -» §+§,inordertoget p + a)

G &
Sgnls
)

CONTEXT FREE GRAMMARS

5.13

— a*b+ S (Second symbol from the leftisb, sousing § — 5)

I

Figure : Parsetreefor a*b + a

Example 2 : Consider agrammar ¢ having productions § — adS|a, 4 — SbA| SS| ba .

Show that § => aabbaa and construct a derivation tree whose yield is aabbaa.

Solution :
S = adS
= aSbAS
—>aabAS

= gabbaS
= aabbaa

Hence, S = gabbaa
Parse tree is shown in figure .

Figure : Parse tree yielding aabbaa

5.14

FORMAL LANGUAGES ANDAUTOMATATHEORY

Example 3 : Consider the grammar G whose productions are

S = 0Bj14, 4 - 0|0S]l44, B — 1|1S|0BB . Find
(a) Leftmost and(b) Rightmost derivation for string 00110101, and construct derivation tree also.

Solution :
(a) Leftmost derivation :
§ = 0B = 00BB
= 001B = 00118

= 001108 = 001101S

= 00110108 = 00110101
(b) Rightmost derivation :

S = 0B = 00BB
=> 0081 = 00151
= 001141 = 0011051

= 00110141 = 00110101
(c) Derivation tree :

Derivation tree is shown in below figure .

5.4 AMBIGUITY IN CFGs

Figure : Derivation tree for 00110101

A grammar G is ambiguous if there exists some string w € L(G) for which there are
two or more distinct derivation trees, or there are two or more distinct leftmost derivations.

CONTEXT FREE GRAMMARS 5.15

Example 1 : Considerthe CFG S — S + S|S * S|a|b andstring w = a * g + b ,and

derivations as follows:
Solution :

First leftmost derivation for w = g *a + b

S=>8%S$ (Usings - §*58)
>a*s (Using § — a)
Sa*S+S (Usings —» S+ §)
=S a*a+ S (Using § — a)
=a*a+bh (Using § —» b)
Second leftmost derivation for w = g *aq + b
S=8+8 (Using § —» § +8)
= S*S+ S (Using s —» §*5)
> a*S+S (Using § — a)
=a*a+ S (Using § — a)
=S a*a+bh (Using § —» b)

Two distinct parse trees are shown in figure (a) and figure (b)

Figure(a) Parse tree for g * g + b Figure(b) Parse tree for g *q + b

Since, there are two distinct leftmost derivations (two parse trees) for string w , hence w is
ambiguous and there is ambiguity in grammar G

Example 2 : Show that the following grammars are ambiguous.
(@S — SS|alb
(b)S > A|B|b, A —>adB|ab, B — abB|e

5.16 FORMAL LANGUAGES AND AUTOMATATHEORY

Solution :
(a) Consider the string = sb5 , two leftmost derivations are as follows :

$S=S5 (Using § » 55) 5755 (Using § — S5)
S.—Z>bS (Using S — &) =L>SSS (Using s —» S5)
=bSS (Using s —» 55) 7SS (Using § - b)
:L»bbS (Using S - b) ?bbs (Using § — b)
=bbb (Using § > b) bbb (Using 5 — 5)

Two parse trees are shown in figure(a) and figure(b) .

Figure (a) Parse tree for bbb Figure (b) Parse tree for bbb
So, the given grammar is ambiguous.

(b) Considerthe string w = ab , we gettwo leftmost derivations for w as follows :

S= 4 S=B
L L
=ab (Using 4 - ab) i (Using B —> abB)
=4b (Using B — €)

Two parse trees are shown in figure () and figure (d).

CONTEXT FREE GRAMMARS 5.17

Figure (c) Parse tree for w = ab Figure (d) Parse tree for yw = ab
So, the given grammar is ambiguous.

541 Removal of Ambiguity

5.4.1.1 Left Recursion

A grammar can be changed from one form to another accepting the same language. Ifa grammar
has left recursive property, it is undesirable and left recursion should be eliminated. The left
recursion is defined as follows,

Definition :A grammar G is said to be left recursive if there is some non terminal A such that
4 =* Aa.Inotherwords, in the derivation process starting from any non - terminal A, ifa sentential
form starts with the same non - terminal A, then we say that the grammar is having left recursion.

Elimination of Left Recursion
The left recursion in a grammar G can be eliminated as shown below. Consider the A - production

ofthe form A= Aa|Aaylday......... A, \B\B | By e B
where 8,'s do not start with A. Then the A productions can be replaced by

A B A A" |BA e B, A
A sa 4|l A .| @, 4" | €
Note that «,'s do not start with 4!.
Example 1 : Eliminate left recursion from the following grammar
E—- E+T|T
T—>T*F|F
F > (E) |id

5.18

FORMAL LANGUAGES AND AUTOMATATHEORY

Solution : The left recursion can be eliminated as shown below :

Given Substitution ‘Without left recursion
A—->Aap, A—->pA'and A'>a, A'le
E—E+T|T A=E E - TE'
a =+T E' 5> +TE' | e
B=T

T—>T*F|F A=T T — FT'
o =*F T'>*FT' | e
B=F

F— (E)|id Not applicable F—>(E)|id

The grammar obtained after eliminating left recursion is

E - TE'

E' 5 +7TE'|e

r — FT

' - *FT'|e
F > (E)|id

Example 2 : Eliminate left recursion from the following grammar

Solution :

S > 4b|a

A > Ab|Sa

The non terminal S, even though is not having immediate left recursion, it has left recursion
because S = 4b=> Sab 1.€., § =* Sab - Substituting for S in the A - production can eliminate the
indirect left recursion from S. So, the given grammar can be written as

S Abla

A—> Ab| Aba|aa

Now, A - production has left recursion and can be eliminated as shown below :

CONTEXT FREE GRAMMARS 5.19

Given Substitution Without left recursion
A>Ada |p, A->p,A'and A' > a,4'le
S —> Abla Notapplicable S—>4b|a
A—> Ab| Aba |aa A=A A= aad

a;=b A' b4 | bad'| e

@y =ba

B =aa

The grammar obtained after eliminating left recursion is
S —> 4bla
A > aad'
A" > b4 bad' | e
5.4.1.2 Left Factoring

Definition :

Two or more productions of a variable A of the grammar G = (¥, T, P,S) are said to have left
factoring if A - productions are of the form 4— afy |ab,|....lap,, where B,e(V v T)* and
does not start (prefix) with & . All these A - productions have common left factor a.

Elimination of Left Factoring

Let the variable A has (left factoring) productions as follows :

A= afylaf (a3 | ... By 72 |-\7m , Where 8.5, fi B,and y,, 75,7, do not
contain ¢ asa prefix, then we replace A - productions by:

A= A | 31 73} oo | Vs WheTe 45> B | B]....] .

Example : Consider the grammar S — aSa | az and remove the left factoring (ifany).

Solution :

S->aSa and §->aa have « =a asaleft factor, so removing the left factoring, we get the
productions: S —>aS', §'—> Sa|a.

5.20 FORMAL LANGUAGES AND AUTOMATATHEORY

The problem associated with left factoring and left recursive grammars is back - tracking. We
can find ¢ as a prefix in RHS in many ways and a string having « as a prefix can create
problem. In worst condition, to get appropriate remaining part of the string we have to search the
entire production list. We take the first production, if it is not suitable then take second production
and so on. This situation is known as back - tracking . For example, consider the above S -
productions § - aSa | aa and a string w=aa. We have choice of the both productions looking at
the first symbol on the RHS.

Iteration First : Iteration Second :
S = aSa S=aa=w
= aqaa #+ w
So, if we follow the iteration first, then we can not get the string w and we will have to return to
the iteration second i. . the starting symbol. The problem, in which we proceed further and do
not get the desired string and we come to the previous step, is known as back - tracking. This
problem is a fundamental problem in designing of compilers (parser).

Procedure for Removal of Ambiguity :

We have no obvious rule or method defined for removing ambiguity as we have for left recursion
and left factoring. So, we will have to concentrate on heuristic approach most of the time.

Let us consider the ambiguous grammar § — S +5| S *S]a| 5. Now, if we analyze the
productions, then we find that two productions are left recursive, So, first we try to remove the left recursion.
S—>S+85and S S *S isreplaced by §-»>aS'|bS", §'—> +8S'[*SS' | e
Now;, we check the derivation for ambiguous string y, = 4 *4 + ¢ . We have only one left most
derivation or only one parse tree given as follows :
S = as"
= a*ss'
.:a"‘aS‘S'
= a*a+85'S
=a*a+asS'S'S'
=a*ag+acs's
=a*a+aecl
=a*a+ae (z=a*a+a)
So, we conclude that removal of left recursion (and left factoring also) helps in removal of
ambiguity of the ambiguous grammars.

CONTEXT FREE GRAMMARS 5.21

5.5 MINIMIZATION OF CFGs

As we have seen various languages can effectively be represented by context free grammar. All
the grammars are not always optimized. That means grammar may consists of some extra symbols
(non - terminals). Having extra symbols unnecessary increases the length of grammar.
Simplification of grammar means reduction of grammar by removing useless symbols. The
properties of reduced grammar are given below :

1. Each variable (i. e. non - terminal) and each terminal of G appears in the derivation of some
word in L.

2. There should not be any production as x —» ¥ where X and Y are non - terminals.
3. If ¢ isnotinthe language L then there need not be the production x —»e.

We see the reduction of grammar as shown below :

Reduced grammar
Removal of Elimination of Removal of
useless symbols e productions unit productions

5.5.1 Removal of useless symbols

Definition : A symbol X is useful if there is a derivation of the form
S=*akp ="w
Otherwise, the symbol X is useless. Note that in a derivation, finally we should get string of

terminals and all these symbols must be reachable from the start symbol S. Those symbols and
productions which are not at all used in the derivation are useless.

Theorem 5.5.1 :letG=(V, T P S)be aCFG We can find an equivalent grammar
G, = (¥,,I},P,,S) suchthatforeachAin (V;UT)) there exists « and g in (F{UT})* and x in
T* forwhich § =" a4 g =" x.

5.22 FORMAL LANGUAGES AND AUTOMATATHEORY

Proof: The grammar G, can be obtained from G in two stages.

STAGE 1:

Obtain the set of variables and productions which derive only string of terminals i. e., Obtaina
grammar G, = (V7.7},A ,5) such that ¥, contains only the set of variables A for which 4" x
where x e 7 * .

The algorithm to obtain a set of variables from which only string of terminals can be derived
is shown below.

Step 1: [Initialize old _ variables denoted byovto ¢]

ov=¢

Step 2: Takeall productions of the form 4 — x where , o7+ i.e.,ifthe R. H. S of the
production contains only string of terminals consider those productions and
corresponding non terminals on L. H. S are added to new _ variables denoted by nv.
This can be expressed using the following statement :

mw={A|A—>x and xeT"}

Step 3 : Compare ov and nv. As long as the elements in ov and nv are not equal, repeat the

following statements. Otherwise goto step 4.

a. [Copynew_ varialbestoold variables]
ov=nv
b. Add all the elements in ov to nv. Also add the variables which derive a string
consisting of terminals and non terminals which are in ov.

nv =ov U {A|Ad> yand ye(ov U T)"}
Step 4 : When the loop is terminated, nv (or ov) contains all those non terminals from which
only the string of terminals are derived and add those variables to ¥;.
i.e,V=ov
Step 5: [Terminate the algorithm]
return ¥,

Note that the variable ¥, contains only those variables from which string of terminals are obtained.
The productions used to obtain ¥, areadded to A and the terminals in these productions are
addedto 7;.The grammar G, = (¥}, ;, R, S)contains those variablesAin ¥, suchthat 4 —*
for some x in 7+. Since each derivationin G, isaderivationof G L (G,) = L(G).

CONTEXT FREE GRAMMARS S5.23

STAGE 2:

Obtain the set of variables and terminals which are reachable from the start symbol and the
corresponding productions. This can be obtained as shown below

GivenaCFG G = (¥, T, P, §) . wecan findan equivalent grammar G, = (V,,T;,P,,S)
such that foreach Xin ¥, U 7, thereexists « suchthat § —* ¢ and X is asymbolin « i.e.,
ifXisavariable x e ¥, andif X is terminal x e T, . Each symbol Xin ¥, U T, isreachable from
the start symbol S. The algorithm for this is shown below.

vy ={S}
ForeachAin ,
iff 4 o then
Add the variablesin 4 to ¥,

Add the terminalsin & 10 T,
Endif
Endfor

Using this algorithm all those symbols (whether variables or terminals) that are not reachable
from the start symbol are eliminated. The grammar G, does not contain any useless symbol or

production. Foreach X €Z(G,) there is a derivation.
S="axp="x
Using these two steps we can effectively find G, such that L(G)=L(G,) and the two
grammars G and G, are equivalent.

Example 1: Eliminate the useless symbols in the grammar
S - aA| bB
A - aAla
B - bB
D - ab |Ea
E - aC|d
Solution :

Stage 1 : Applying the algorithm shown in stage 1 of the theorem 5.5.1, we can obtain a set of
variables from which we get only string of terminals and is shown below.

5.24 FORMAL LANGUAGES AND AUTOMATA THEORY

oV nV Productions
A EEY a
¢ A,D,E D - ab
E - d
S - aA
A,D,E A,D,E, S A - aA
D - Ea
A.D,E,S A,D,E,S

Theresulting grammar G, = (¥,,7;, £, S) where

" = {4,D, E S}

I} = {a,b, d}

B =
A -» alaA
D - ab|Ea
E - d
S - aA

} S isthe start symbol
contains all those variables in ¥, suchthat 4 =* w where . 7+.

Stage 2:
Applying the algorithm given in stage 2 of the theorem 5.5.1, we obtain the symbols such that
cach symbol X is reachable from the start symbol S as shown below.

P, T, v
- - S
S —> ad a S, A
A—alad a S,A
The resulting grammar G, = (V,,1,, B, S) where V, ={S,4} . T, ={a}
Pl ={
S - ad
A — alad

} 8 is the start symbol
such that each symbol X in (¥, UT;) hasaderivationofthe form § =" aXg=" w.

CONTEXT FREE GRAMMARS 5.25

Example 2 : Eliminate the useless symbols in the grammar

S - aAla|Bb|cC
A - aB
B - alAa
C - cCD
D - ddd
Solution :
Stage 1:

Applying the algorithm shown in stage1 of theorem 5.5.1 , we can obtain a set of variables from
which we get only string of terminals and is shown below,

ov n Productions
S — a
¢ S,B,D B - a
D -y ddd
S,B,D S,B,D,A S - Bb
A - aB
S,B,D,A S,B,D,A S =3 aA
B - Aa

Theresulting grammar G, = (¥, , 7;, P, S) where
V,= {S, B,D,A}

= {a,b,d}
P,= {
S > a|Bb|aA
B. > alAa
D - ddd
A > aB
3

S is the start symbol contains all those variables in ¥, suchthat 4 =* .
Stage 2:

Applying the algorithm given in stage 2 of the theorem 5.5.1, we obtain the symbols such that
each symbol X is reachable from the start symbol S as shown below.

5.26 FORMAL LANGUAGES AND AUTOMATA THEORY

P, T, v,
- - S
S—» a|BblAa a.b S.A, B
A - aB a,b S,A,B
B alAa a,b S,A,B
The resulting grammar G, =(V,, 7,,F,,S) where
Ho = {S,A,B}
T = {ab}
P, = {

S - a|BbjaA
A - aB
B - alAa

} S is the start symbol

such that each symbol X in (¥, w 7)) hasaderivation of the form §=" axg =" w.
5.5.2 Eliminating ¢ - productions

Aproduction of the form 4 —» e is undesirable ina CFG unless an empty string is derived from
the start symbol. Suppose, the language generated from a grammar G does not derive any
empty string and the grammar consists of e~ productions. Such ¢ - productions can be removed.
An ¢ - production is defined as follows :

Definition1: LetG=(V,T,P,S)beaCFG A production in P of the form

A—> e

is called an e - production or NULL production. After applying the production the variable Ais
erased. For each Ain V, if there is a derivation of the form

A=>" €
then A is a nullable variable.
Example : Consider the grammar
S - ABCa|bD
A - BC|b
B

=]|

CONTEXT FREE GRAMMARS 5.27

C - cle
D - d
In this grammar, the productions
B e
C—e
.are ¢ - productions and the variables B, C are nullable variables. Because there is a production
A — BC

and both B and C are nullable variables, then A is also a nullable variable.

Definition2: Let G=(V.,T,P,S)be a CFG where V is set of variables, T is set of terminals,
P is set of productions and S is the start symbol. A nullable variable is defined as follows.
1. If 4 - e isaproductionin P, then A is anullable variable.
2. If 4 - B, B........ B, isaproductionin P, and if B, B,........ B, are nullable variables,
then A isalso a nullable variable

3. The variables for which there are productions of the form shown in step 1 and step 2 are
nullable variables.

Even though a grammar G has some ¢ - productions, the language may not derive a language
containing empty string. So, in such cases, the e - productions or NULL productions are not
needed and they can be eliminated.

Theorem 5.5.2 : LetG=(V,T,P,S)where L(G)# . We can effectively find an equivalent
grammar G, with no e- productions such that L(G,) = L(G)-€.
Proof : The grammar G, canbe obtained from G in two steps.

Step 1: Find the set of nullable variables in the grammar G using the following algorithm.

ov=¢
ny = {4|d—>e }
while (ov!=nv)

{

ov=ny
nww=ov U {A|ld>aand acov"}

¥
V=ov
Once the control comes out of the while loop, the set V contains only the nullable variables.

5.28 FORMAL LANGUAGES AND AUTOMATATHEORY

Step 2: Construction of productions p, . Consider a production of the form
A""X|X2X3 Xﬂ’ nzl

where each X, isin (¥ v T'). Inaproduction, take all possible combinations of nullable
variables and replace the nullable variables with ¢ one by one and add the resulting productions
to p, .Ifthe given productionisnotan ¢ - production,additto p, .

Suppose, A and B are nullable variables in the production, then

1. Firstadd the productionto P, .
Replace A with eand add the resulting productionto P,
Replace B with ¢ and the resulting productionto 2, .
Replace Aand B with € and add the resulting productionto p, .
If all symbols on right side of production are nullable variables, the resulting production is
an ¢ production and do not add thisto P, .

Thus, the resulting grammar G, obtained, generates the same language as generated by G
without ¢ and the proof'is straight forward .

Ol B L

Example 1 : Eliminate all ¢ - productions from the grammar

S - ABCa|bD
A > BClb
B - b| e
C - cle
D — d
Solution :
Step 1 :

Obtain the set of nullable variables from the grammar. This can be done using step 1 of theorem
5.5.2 as shown below. ;

ov v Productions
¢ B,C B e

C—e
B,C B,C,A A- BC
B,C.A B,C,A -

V= {B, C,A} areall nullable variables.

CONTEXT FREE GRAMMARS 5.29

Step 2 : Construction of productions P, .

Productions Resulting productions (P,)

S — ABCa S — ABCa|BCa|ACa| ABa|Ca|
Aa|Ba|a

S — bD S — bD

A — BC|b A - BC|B|C|b

B> ble B —>b

C—>cle C e

D—d D—>d

The grammar G, = (¥;,1,,F,,S) where

ki = {S$,A,B,C,D}
{a,b,c,d}
{ S ABCa|BCa| ACa |ABaCa|Aa|Baa | bD
A -5>BC|B|C|b
Bob
Coc
D->»d
} S isthe start symbol
Example 2: Eliminate all ¢- productions from the grammar

L
([

S - BAAB
A - 0A2|2A0]
B - AB|1B]| ¢
Solution :
Step 1 : Obtain the set of nullable variables from the grammar. This can be done using
step 1 of theorem 5.5.2 as shown below.

ov v Productions
¢ A,B A—e

: B—o>g
A, B A,B, S A —> BAAB
A,B,S A,B,S -

V={S,A,B } areall nullable variables.

5.30 FORMAL LANGUAGES AND AUTOMATATHEORY

Step 2 : Construction of productions 7, . Addanon e-productioninPto 7, . Takeall the
combinations of nullable variables in a production, delete subset of nullable variables one by one
and add the resulting productionsto P, .

Productions Resulting productions (7,)

S - BAAB S -» BAAB|AAB |BAB|BAA|
AB|BB|BA|AA|A|B

A — 0A2 A - 0A2]02

A - 2A0 A - 2A0]20

B —» AB B > AB|B|A

B - 1B B 1B|I

We can delete the productions of the form A > A.In p, , the production B -» B canbe
deleted and the final grammar obtained after eliminating e -productions is shown below.

Thegrammar G, = (V,.T;,P,.S) where

y, = {S,A,B,C,D}

T, = {ab,cd}

p, = {S - BAAB|AAB|BAB |BAA|AB|BB|BA|AA|A|B
A - 0A2|02]2A0]20
B - AB|A|1B|1

} S isthe start symbol
5.5.3 Eliminating unit productions
Consider the production 4 —» 8. The left hand side of the production and right hand side of the
production contains only one variable. Such productions are called unit productions. Formally,a
unit production is defined as follows.
Definition : Let G=(V, T, P, S)beaCFG. Any production in G of the form

A—>B

where A, p ey isaunit production.

In any grammar, the unit productions are undesirable. This is because one variable is simply
replaced by another variable.

CONTEXT FREE GRAMMARS 5.31

Example : Consider the productions.
A—> B
B> aBlb
In this example,
B — aB
B—>b

are non unit productions. Since B is generated from A, whatever is generated by B, the same
things can be generated from A also. So, we can have

A— aB
A— b and the production 4 — B can be deleted.

Theorem 5.5.3 : LetG=(V, T, P, S) be a CFG and has unit productions and no - productions.
An equivalent grammar G, without unit productions can be obtained such that L(G) = L(G)) i. e.,
any language generated by G is also generated by G, . But, the grammar G, has no unit productions.
Proof :
A unit production in grammar G can be eliminated using the following steps :
1. Remove all the productions of the form 4 —» 4
2. Add all nonunit productionsto A .
3. Foreach variable A find all variables B such that
A="B
i. e., in the derivation process from A, if we encounter only one variable in a sentential
form say B (no terminals should be there), obtain all such variables.
4. Obtain a dependency graph. For example, if we have the productions
A-B
B->C

C—>B
the dependency graph will be of the form

X9

5. Note from the dependency graph that

a. A=>* B i.e., B can be obtained from A
So, all non - unit productions generated from B can also be generated from A
b. A=*(i.e., Ccanbe obtained from A

So, all non - unit productions generated from C can also be generated from A

5.32 FORMAL LANGUAGES ANDAUTOMATATHEORY

¢. B=*C i.e., C can be obtained from B

So, all non - unit productions generated from C can also be generated from B
d. € =>* B i.e., B can be obtained from C

So , all non - unit productions generated from B can also be generated from C.
6. Finally, the unit productions can be deleted from the grammar G.

7. The resulting grammar G, , generates the same language as accepted by G.

Example1 : Eliminate all unit productions from the grammar

S - AB
A - a

B —» Clb
cC - D

D - E|bC
E - d| Ab

Solution : The non unit productions of the grammar G are shown below :

S - AB
A - a
B - b
D - iC
E o didb e (1)
The unit productions of the grammar G are shown below :
B -» C
¢ —-> D
- B - E

The dependency graph for the unit productions is shown below :

B—XO—0)—(&)

Tt is clear from the dependency graph that all non unit productions from E can be generated from
D. The non unit productions from E are

E - d|4b
© Since D =*E,

D->d|Ab

CONTEXT FREE GRAMMARS 5.33

The resulting D productions are

D - bC (from production(1))

Duwdidy = s (3)
From the dependency graph it is clear that, C = *E . So, the non unit productions from E shown
in (production(2)) can be generated from C. Therefore,

C—d| Ab
From the dependency graph it is clear that, C = *D. So, the non unit productions from D shown
in (production(3)) can be generated from C. Therefore,

C-bC

Codlab e 4
From the dependency graph it is clear that B = *C, B=*D, D=>*E . So,all the productions

obtained from B can be obtained using (productions (1), (2), (3) and (4)) and the resulting
productions are :

B—b

B-»d |Ab

BBC e (5)
The final grammar obtained after eliminating unit productions can be obtained by combining the
productions (Productions (1), (2), (3) , (4), and (5)) and is shown below :

v, = {S,A,B,C,D,E}
T,={8,b,d} ;
P, ={ AB
a
b|d|Ab|bC
bC |d|Ab
bC|d|Ab
d|Ab
} S isthe start symbol

R R

moQw» w

Example 2 : Eliminate unit productions from the grammar

S > AO|B
B > AlM
A > 0|12|B

5.34 FORMAL LANGUAGES AND AUTOMATATHEORY

Solution : The unit productions of the grammar G are shown below :

S - B
B - A
A = B

The dependency graph for the unit productions is shown below.

Er—E

The non unit productions are :

S - A0
B - 11
A - 0112 2z (1)

It is clear from the dependency graph that § =*B, S =>*4, B=>*4 and 4=*8.So, the
new productions from S, A and B are
S - 111|012
B - 012
A - ;R PO r—. 2)
The resulting grammar without unit productions can be obtained by combining Productions
(1) and (2) and is shown below :
v, = {S,A,B} , 1, = {0,1,2}
P, = { S - AOj11]0]12
A - 011211
B - 11012
} S isthe start symbol

Note : Given any grammar, all undesirable productions can be eliminated by removing
1. - productions using theorem 6.5.2
2. unit productions using theorem 6.5.3.
3. useless symbols and productions using theorem 6.5.1

in sequence. The final grammar obtained does not have any undesirable productions.

5.6 NORMAL FORMS

As we have seen the grammar can be simplified by reducing the ¢ production, removing useless
symbols, unit productions. There is also a need to have grammar in some specific form. As you
have seen in CFG at the right hand of the production there are any number of terminal or non -
terminal symbols in any combination. We need to normalize such a grammar. That means we
want the grammar in some specific format. That means there should be fixed number of terminals
and non - terminals, in the context free grammar.

CONTEXT FREE GRAMMARS 5.35

In a CFG, there is no restriction on the right hand side of a production. The restrictions are
imposed on the right hand side of productions ina CFG resulting in normal forms. The different
normal formsare :

1. Chomsky Normal Form (CNF)
2. Greiback Normal Form (GNF)

5.6.1 Chomsky Normal Form (CNF)

Chomsky normal form can be defined as follows.

Non - terminal —s Non - terminal Non - terminal
Non - terminal —» terminal

The given CFG should be converted in the above format then we can say that the grammar is in
CNF. Before converting the grammar into CNF it should be in reduced form. That means
remove all the useless symbols, e productions and unit productions from it. Thus this reduced
grammar can be then converted to CNF.

Definition :
LetG= (V, T,P,S)beaCFG The grammar G is said to be in CNF if all productions are
of the form '
A - BC
or
A - a
where A,Band Ce¥V andaeT.
Note that ifa grammar is in CNF, the right hand side of the production should contain two
symbols or one symbol. [fthere are two symbols on the right hand side those two symbols must
be non - terminals and if there is only one symbol, that symbol must be a terminal.

Theorem 5.6.1 : Let G= (V. T, P, S) be a CFG which generates context free language
without <. We can find an equivalent context free grammar G, =(V,,T,F;,S) in CNF such that
L(G)=L(G,) i.e.,all productionsin G, are of the form

A - BC
or
A N a

5.36 FORMAL LANGUAGES AND AUTOMATATHEORY

Proof: Let the grammar G hasno e - productions and unit productions. The grammar G, can
be obtained using the following steps.

Step 1 : Consider the productions of the form

where n =2 andeach X, (¥ wT) i e., consider the productions having more than two symbols
on the right hand side of the production. If X is a terminal say a, then replace this terminal by a
corresponding non terminal B, and introduce the production

B, a
The non - terminals on the right hand side of the production are retained. The resulting productions
areadded to B,. The resulting context free grammar G, = (¥, T, B, S) where each production
in £ is of the form

A—a
generates the same language as accepted by grammar G. So, L(G) = L(G)).

Step 2 : Restrict the number of variables on the right hand side of the production. Add all the
productions of G, which arein CNF to p, . Consider a production of the form

where n 23 (Note thatif n =2, the production is already in CNF and n can not be equal to 1.
Because if n = 1, there is only one symbol and it is a terminal which again isin CNF). The A -
production can be written as
A - A, Dy
D, - Ay Dy
Dy = A3zD;

Dp.a = Ap1Dyy
These productions are added to P, and new variables are added to ¥, . The grammar thus
obtained is in CNF. The resulting grammar G, =(¥;, T,R,S) generates the same language as

accepted by G 1. e. L(G)=L(G,).

CONTEXT FREE GRAMMARS 5.37

Example 1: Consider the grammar

s > 0A|1B

A - OAA|1S|1

B - 1BB|0S|0 Obtain the grammar in CNF :
Solution :

Step 1: All productions which are in CNF are added to . The productions which are in
standard form and added to A, are:

A - 1

B s 06 e (1)

Consider the productions, which are notin CNF. Replace the terminal a on right hand side
of the production by a non - terminal A and introduce the production A - a. This step hasto be
carried out for each production which are not in CNF.

The table below shows the action taken indicating which terminal is replaced by the
corresponding non - terminal and what is the new production introduced. The last column shows
the resulting productions.

Given Productions Action Resulting productions
S >0A[1B Replace O by B, and introduce S-» By, A|B, B
the production By— 0 B;—0
Bi—1

Replace 1 by B, and introduce the
production B, -» 1

A - 0AA/1IS Replace 0 by B, and introduce the | 4-> By 44/ 5, S
production B; -0 By—0
B =1

Replace 1 by B, and introduce the

production B, — 1
B - 1BB/0S Replace 0 by B, and introduce the B —> B,BB/ ByS
production B, -0 By -1

By —~0
Replace 1 by B, and introduce the
production B; - 1

5.38 FORMAL LANGUAGES AND AUTOMATATHEORY

The grammar G, = (¥, T, A, S) can be obtained by combining the productions obtained from
the last column in the table and the productions shownin (1).

ho o= {S,A,B, B, B }

n = {0,1}

P = { S 5 B,A|B, B
A - ByAA|BS |1
B - B,BB|B,S |0
B, - 0
B, - 1

g } S isthe start symbol
Step 2:

Restricting the number of variables on the right hand side of the production to 2. The productions
obtained after step 1 are:

S > ByA|BB
A - ByAA|BS|I
B - BBB|BS|0
By = 0
B - 1
In the above productions, the productions which are in CNF are
S — ByABB

A - BSj|l

B — BS|0

B, = 0

B oewm X s 2)

and add these productions to 2, . The productions which are not in CNF are

A > BydA
B - BBB

The following table shows how these productions are changed to CNF so that only two variables
are present on the right hand side of the production.

CONTEXT FREE GRAMMARS 5.39

Given Productions Action Resulting productions
A ByAA Replace AAonR.H.S with variable | A4— ByD,

D, and introduce the production Dy = AA

D, — A4
B — B,BB Replace BB onR. H. S with variable | B — B,D,

D, and introduce the production D, —» BB

D,—»BB | e (3

The final grammar which is in CNF can be obtained by combining the productions in (2)and (3).
The grammar G, = (¥,,T,F,,S) isin CNF where

4 = {S,A,B, B,,5,D,D,}

i = {0, 1}

P = { S — ByA|BB

— BS|1| ByD;

B - B;S|0! BD,
By =0
B -1
D, = A4
D, — BB

} Sisthe start symbol

Example 2 : Find agrammar in CNF equivalent to the grammar .

S>-S|[STS]|alb
Solution : Given, grammaris:

S$S>-S|[STS1lalk . (A)
where, terminals are :
—~[.T.),aand b

In the given grammar (A) there is no any e—production, no any unit - production and no any
useless symbols .

Now, in the given grammar (A), following are the productions which is already in the form
of CNF: S—a

S—b

5.40 FORMAL LANGUAGES AND AUTOMATATHEORY

Also, in the given grammar (A), following are the productions which are not in the form of CNF:
§—>-§
S-S T8]
Thus: (a) Considering the production :
S—>-8
We can write this production as :
S->VS B (i 5
V, - R .41
where V| isanew variable.
(b) Now, considering the production :

S>[sTS]

We can write this productionas :
SV, SV, 8V, e (3)
v, | v (4)
v,>1 R]
V,—=1 weer (6)

where V,, ¥, and ¥, are new variables.
Thus, from (1),, (6), the result grammar becomes :
S>VS|V,SV,SV,|alb

Wit
A R —— B)
v,-1
Ve—1]
Now, in the resultant grammar (B), following is the production which is not in the form of CNF:
SV, SV, SV,
(©) Now, considering the production :
S-W,SV,5V,
We can write this production as :
Sy, (7)
v.->sv, . (8)

VSV, ©9)

CONTEXT FREE GRAMMARS 5.41

Thus, from (7), (8) and (9), the resultant grammar becomes :
SV, S|VVY, |alb
V-
ad
=8y (C)
Ve 57,
v,-» 1T
Vi—]

Now, in the resultant grammar (C), following is the production which is not in the form of CNE:
SV, Y,

We can write this production as :
S->vyv, . (10)
vy, (11)

Thus, from (10)and (11), the resultant grammar becomes :

' S >V, SW,V,|dp
-
A
G s (D)
v, > s,
v, 57,
v,-> 1
V=]
Thus, the resultant grammar (D) is in the form of CNF, which is the required solution.

5.6.2 Greibach Normal form (GNF)

Greibach normal form can be defined as follows :

Non - terminal — one terminal. Any number of non - terminals

Example :
S ad isin GNF
S—a isin GNF

5.42 - FORMAL LANGUAGES AND AUTOMATA THEORY

But S AA isnotin GNF
S— Aa isnotin GNF
Definition : A CFG G = (V, T,P,S) isin Greibach normal form (GNF) if its all productions
areoftype 4 — ac, Where « v (String of variables including null string)and a €7 . Agrammar
in GNF is the natural generalization of a regular grammar (right - linear).

Theorem 5.6.2 : Every CFL L without e is generated by grammar, where productions are of
type 4 — aa,Where aelV " and aeT.

Proof : We use removal of left recursion (without null productions) as given below.
Let the variable A has left recursive productions given as follows :

A Agy|day| Aass...| Aa, | B B Bi....| B, , where 8. 8,, B, B,, donotbegin with A, then
we replace A - productions by the productions given below .
A BABA...\ B, A5 B |Bs) |B, , Where
A'> o dla, Al az Ao |a, Aley | @ s L da,
Method for Converting a CFG into GNF :
We consider CFG G =(V , T'.P,S) .
Step 1: Renameall the variablesof Gas 4,, 4,, 45,, 4,
Step 2: Repeat Step 3 and Step 4 for i=1, 2, n

Step3: If 4,»aa,a,a;.....a, ,Where a €T ,and «; isavariable or a terminal symbol,
Repeat for j=1,2,......... , m
If @, is a terminal then replace it by a variable 4,,; and add production 4,., >, ,and
n=n+1.Consider the next 4 — production and go to step 3.
Step4: If 4, - a,a,a5........a,,, Where ¢, is avariable, then perform the following :

If o, issame as 4;, then remove the left recursion and go to Step 3.

Else replace «, by all RHS of ¢, -productions one by one. Consider the remaining

4, -productions, which are not in GNF and go to Step 3.
Step 5: Exit
Advantages of GNF :
1. Avoids left recursion.
2. Always has terminal in leftmost position in RHS of each production.
3. Helps select production correctly.
4. Guarantees derivation length no longer than string length.

CONTEXT FREE GRAMMARS 5.43

Example 1 : Consider the CFG S—>S+S|S*S|a| b and find an equivalent grammar in GNF.

Solution:

Let G, is theequivalent grammar in GNF.

Renaming the variable, we get

P:8 S +5 (Notin GNF)

P:5285*S (Notin GNF)

Py:S,—>a (In GNF)

PS> b (In GNF)

P, and P, are left recursive productions, so removing the left recursion, we get
§,—>aS,|bS ,| alb , where

S+ 8,85,* 8§, 5,1+ 5,1 *S,

Now, all productions are in GNF.
Example 2 : Consider the grammar G = ({ 4,,4,,4,},{a,b},P,4,) , where P consists of

following production rules.
Ay = Ay Ay, A;—> A5 A4,|b, A, — A A,]a Convertitinto GNF.

Solution : (Renaming is not required)
Consider 4, - productions :

A = Ay 4, (Not in GNF)
Replacing 4, by its RHS, we get
A, > bA; (In GNF)
A = Ay A4, (Notin GNF)
Now, consider 4, — 4,4, 4,,and replacing 4, by its RHS, we get
A - ad 4, (In GNF)
A = A A A A (Notin GNF)

So, 4,-productions are 4, —>b4, | ad, 4, |4, 4, 4, 4;
Now, consider 4, — 4,4, 4, A; and removing left recursion, we get

A = bAy A, |bA, (In GNF)
Ay —>ad, A, A, |ad, 4; - (In GNF), where
Ay > A A Ay Ay Ay A Ay

(A, isanew variable and its production is not in GNF)
So,now all 4, - productions are in GNF .

5.44 FORMAL LANGUAGES AND AUTOMATA THEORY

Consider the 4, - productions :

Ay —b (In GNF)

Ay = A3 A (Not in GNF)
Now, consider 4, - 4;4, and replacing 4, by its RHS, we get

A, —ad, (In GNF)

A, = A Ay 4 (Not in GNF)
Now, consider 4, —» 4, 4,4, and replacing 4, by its RHS, we get

Ay = bAsA Ay 4y, (In GNF)

Ay —> bAy A, A (In GNF)

A, —> ad A, A, 4, A, (In GNF)

Ay —ad, A, 4, A (In GNF)

So,all 4,-productions are in GNF.
Consider 4, - productions :

4; —>a (In GNF)

Ay - A4y (Not in GNF)
Now, consider 4; — A, 4, and replacing 4, by its RHS, we get

Ay —>bA A A, |bAA, |ad A, A A, | ad A4, (In GNF)
Consider 4, - productions :

Ay > Ay A Ay Ay Ay A Ay (Not in GNF)
Replacing 4, by its RHS, we get '

Ay A A A, | bA A | aM A Ay Ay | ad A Ay,

Ay = bAyAg Ay Ay A A Ay,

Ay > bA Ag Ay Ay A4y,

Ay = bAy Ay Ay A A3 Ay,

Ay > bAs 4y Ay A 45,

A, >aA A A A, A A A A,

A, >ad A A A, A A4,

A, >ad A, 4, A, A, A, A, ,and

A, = aA A, A, A, A A,

Now, all 4, - productions are in GNF.

CONTEXT FREE GRAMMARS 5.45

Productions in GNF are :
4 —ad Ay | bA A, |bAy | ad 4, A, | ad Ay
Ay ob|ad) | b, A, Ay Ay | bAA A, | ad\ 4 A A A |ad Ay Ay 4,
Ay —a|bd, A A, | bAs A, | ad Ay A, A, lad A 4,
Ay b A Ay | bA Ay | ad A Az 4, IMIAIAB | bA A Ay A A A Ay s
A, —bA Ay A A A A, | ad A A A, A A A A, | ad A, A, AA A,
Ay obAAMMA A\ bA A A A A | ad A A Ay A A A, |ad Ay Ay A A,

Example 3 : Find equivalent grammar in GNF,

(3 S > aB|bA,A > aS|bAA|a,B - bS|aBB|b
(b) S —» abSb|a|aAb,A —> bS|aAAb
(c) S —» AA|O,A —» SS|1
Solution :
() Renaming S, Aand Bby 4;, 4,,and 4, respectively, we get the following productions.
A~ ady | bAy Ay -> aky | bhy Ay | a, 4y — b4y |ads 4, | b
Since, all productions are in GNF, so there is no need of any modification.

(b) Renaming S,and A by 4, and 4, respectively, we get the following productions.
A—> abA B a| adb,A,—> bA, | a Ay Ab
Consider the 4, - productions one by one.

A —> abAb (Notin GNF)
Replacing all the RHS terminals except the first by new variables, we get

A —> ady A A; where 4; - b (In GNF)
Considering the next 4, - production :

A—>a (In GNF)
Considering the next 4, - production :

A —> adyb (Notin GNF)
Replacing b by variable 4, (since, we have already defined 4;— b), we get

A, —> ady 4, (In GNF)

Consider the 4, - production :
Ay = bA, (In GNF)

5.46 FORMAL LANGUAGES AND AUTOMATATHEORY

Considering the next 4, - production :

AZ - aAz Azb (Not in GNF)
Replacing b by variable 4, (since, we have already defined 4; - b), we get
Az an)y aAz Az A3 (In GNF)

Now, all productions given following are in GNF.
A, 4 OAJA] A3 }alaAz A3 5 Az -> bAl| aA2A2A3, and AJ —b

(¢) RenamingS,and Aby 4,,and 4, respectively, we get the following productions
A= A0, A > A4 |1
Consider the 4, - productions one by one.
A —> Ay Ay (Not in GNF)
Replacing leftmost 4, by 4,4, and 1, we get
A~ A4 4|14
Considering the production 4, — 4, 4, 4, , thisis notin GNF and has left recursion. Considering
theall 4, - productions 4 —» 44,41 4;| 0 and removing left recursion from the production
A = A A Ay, WE get A — 14, 4;] 04 (In GNF),
Where 4; > A4, 43| 44,
Considering 4, -production 4, - 4,4, and replacing left most 4, by 14,4, and 04, , we get

A2 -> 1/12 A}AﬂOAJA] (In GNF)
Considering 4; - productions 4; -» 4 A, 4;| 4,4, and replacing 4, by 14,4 and 04,, we get
Ay—> 14, A Ay |0 A3 Ay | 1 A4y Az Ay Az| 0434 A (In GNF)

Now, the productions in GNF are following .
Al -5]A2A3IOA3, Az o lAz ASAII 0A3Al|| 3
and Ay = 14y A3 Ay 043 Ay 1Ay A3 Ay As] 043 4y A3
5.7 PUMPING LEMMA FOR CFLs

The pumping lemma for CFLs states that there are always two short substrings close together
that can be pumped same number of times as we like and the result is a string in the same CFL.

CONTEXT FREE GRAMMARS 5.47

Lemma :

Let L bea CFL and a long string z is in L, then there exists a constant n such that | z | > # and z
can be written as uvwxy such that

@ e |21

(i) [vwx |<n ,and

(i) w' wx'y isinLfori=0,1,2,.......
Proof :

Let G bea CFG in CNF and generates L -{< } . Since, zis a long string, so parse tree for z
must contain a long path. Suppose, the longest path in parse tree of z has length h. In the parse
tree, no word can be greater that the length 241 or in other words, the maximum length word
would of length -1,

We see the proofas follows :
Since, the grammar G is in CNF (productions are of types 4 — gz or 4 — XY), so parse tree for

zisabinary tree. The parse tree yields longest word if and only ifits all levels except the last level
contain two children as shown in below figure .

139558

5.48 FORMAL LANGUAGES AND AUTOMATATHEORY

Since, the number of leaves is the length of longest string and it is equal to the number of
nodes at level ; - as shown in above figure .The number of nodes atlevel ;1= A

So, the longest word has the length 2", where h is the longest path length. In other words,
we say that no word can be greater than 2! length.

Let G has k variables and » =2* . If zis in L(G) and | z |=2* . So, the longest path in the

parse tree of zhas length % 41 and this path contains ¢ 12 vertices(+1 internal vertices and
one terminal vertex). Since, all the vertices except the terminal are variables, so the longest path
contains g +] variables, It means, one variable appears twice in the longest path. Let variable A

appears twice, So 4= z; Az, = (%) A(z,)', where z, and z, are two substrings of z. Let

4= z, then 4= (23) 2,(z,)" . We say that z; and z, can be pumped same number of times

as we like.

Example : ConsideraCFG S—> SS | a and z = gaaa. The parsetree for zisshownin figure(a) .

8
{050

z3=aa H=a T =t

Figure (a)

o3 © O
5@ ® 1
® ©

Figure (b) Figure (c)

CONTEXT FREE GRAMMARS 5.49

From the subtree shown in figure (b) , we get g :', aaSe OF S;, 2, § z, andconsidering

the subtree shown in ﬁgure(c),' we get S:; a OF § = 2"

The subtree shown in figure (b) can be added as many times as we like in the parse tree
shown in figure (a). So, S=.> 218z, = z,'2,2}

Therefore, string z can be written as uz;z,z,y for someuand y substrings of z. The substrings
z, and z, can be pumped as many times as we like. Replacing z,, z, and z, by v, wand x

respectively, we get z=uvwxy and g :. w'wx'y forsomei=0,1,2, .ccocvune.
Hence , the statement of theorem is proved.

Application of Pumping Lemma for CFLs

We use the pumping lemma to prove certain languages are not CFL. We proceed as we have
seen in application of pumping lemma for regular sets and get contradiction. The result of this
lemma is always negative.

Procedure for Proving Language is not Context - free

The following steps are considered to show a given language is not context - free.

Step 1:

Supposc that £ iscontext - free. Let 1 be the natural number obtained by using pumping lemma.
Step 2:

Chooseastring xe L such that |x| 21 using pumping lemma principle write z=uvwxy.

Step 3:

Find suitable i so that wv 'wx (ye 1. . Thisisacontradiction. So L isnot context - free.

5.50 FORMAL LANGUAGES AND AUTOMATA THEORY

Example 1 : Consider the language L = {a" " ¢":n>1} and prove that L is not CFL.

Solution : All the words of L contain equal number of a's, b'sand ¢'s. Let Lisa CFLand z is
along string in L such that |z| = » . Using Pumping Lemma for L, we write z = wwwxy and w'wx'y
isinL for somei=0, 1, 2, .ovrrrereee and |vx |21 and | vwx [<n .

The substring vx may be a”, 57, ¢", a®b?, bc" butnot 4r..

Consideri=0,souwyisinL.

Case1: ,._ ;7,50 z=uwy=a""b"c" isinL.

The number of a's is fewer than the number of b's and ¢'s for p =1, which is a contradiction.
Case2: , _p7,50z=uwy=ab" %" iginL.

The number of b's is fewer than the number of a's and ¢'s for ¢ = 1, which is a contradiction,
Case3d: -, ,S0 z=uwy=a"b"c"" isinL.

The number of ¢'s is fewer than the number of a's and b's for » > 1, which is a contradiction.
Cased: . _,7p7,80 z=ywy=a""?b"%" isinL.

The number of a's and b's are fewer than the number of ¢'s for p,q 2 1, which is a contradiction.
Caseb: yx=pi’, S0 z=uwy=a"b""" isinL.

The number of b's and ¢'s are fewer than the number of a's for ¢,»21, which is a contradiction.
Since, we get contradiction for all values of vx, so I is not a CFL.

Example 2 : Prove that following languages are not CFL
(@ L = {aP : p is a prime number}
B L = {a"b™e"d™ :m,n 213}

(©) L = {a""c™ : m 2 n}
Solution :

(a) Allthe words of 7, have length prime. Let 1 bea CFL and z isalongstring in 7. Using
Pumping Lemma for 7, wewrite z = wvwxy and ;'wx'y isin L forsome i = 0,1, 2, and

| vx| =m and | wwy | = n where » isa prime number then | yv"wx"y | = n + mn.AS n + mn is

not a prime number, $0 4y wx"y ¢ £ and this is a contradiction. Therefore, L is nota CFL.
¥y

CONTEXT FREE GRAMMARS 5.51

(b) Let 7 beaCFLand 7 isalongstringin £ suchthat z = wvwxy for | vx|=1and| vwx|=k,
where k is some constant.

In 7, all words have equal number of a's and c's and equal number of b's and d's. The value of
vx may be combination of two consecutive symbols like o757, b9c", c"d* .
According to pumping lemma yv'wyx'y isin f forsome i = 0,1, 2,
Consider ; = 0,then z = wwy isinL.
Casel: yy = o7p9,then
z = a" P I d"

The number of a's and b's are fewer than the number of ¢'sand d's for p,¢ 2 1, whichisa
contradiction.

Case2: yx = pdc",then ; — g"pm~9c""g™

The number of b's and ¢'s are fewer than the number of d's and a's for g, r = 1, whichisa
contradiction.

Case3: vy — c"d.then ; — "™ "dms

The number of ¢'s and d's are fewer than number of a's and b's for »,5 = 1, which is a
contradiction.

Since, we are getting contradiction in ali cases, so L isnota CFL.

(¢) Allthe words of L contain equal number of a's, b's and number of ¢'s is greater than number
ofa's(orb's). Let LisaCFL and zisalong stringin L such that | z | = . Using pumping lemma

for I, we write z = wvwxy and s’ wy'y, whicharein L forsome i = 0,1, 2, and |vx |21

and [vwx|<n.
The substring vx may be g?_p9, ", aPb?, p9c" butnot gPcr.
Consider ; = 0,souwyisinL.

Casel: yy = gP,90 z = uwy = a" Pb"c" isin L.

The number of a's is fewer than the number of b's for p = 1, whichisa contradiction.

5.52 FORMAL LANGUAGES AND AUTOMATATHEORY

Case2: yy = 59,50 z = ywy = @"b" 9" isinL.
The number of b's is fewer than the number of a's for ¢ = 1, which is a contradiction.
Case3: vt =c¢ 80 z = uwy = aptett isin L.

The number of ¢'s may be equal or less than the number of a's (or b's) for » > 1, whichisa
contradiction.

Since, we are getting contradiction in all cases, so L is not a CFL.

Example 3 : Show that the following language is not context free , — {,"2 /n > 1}

Solution :

Method -1: Assume L is context - free and » is the pumping lemma constant
Let . o
write Z = uvwxy ,where| vwx|<n and |vx|21
Let | we|=m, m<n

As | uvzwx2y|> n2,| uvzwxzy |=k2, where kis2n + 1

2

But| w?wx’y|=n% + m < n% +2n+1

So | uv?wx?y | strictly lies between ,2 and (n + 1) which means wiwxly @ Lya

contradiction. Hence {anz :n =1} is not context-free

Method - Il : We can also show that

L ={a,aaaa,acaaaaaaa ...}

wwx’y =€ a*aa*a = aaaaaa

uvzwxzy ¢ L

L is not context-free.

CONTEXT FREE GRAMMARS 5.53

Example 4 : Show that the following language is not context-free
L={0"1"2"/m <n<2m}.

Solution :

Method - | :
Assume L is context-free and » is the pumping lemma constant.
Let 2= 0
Then Z = uwwxy,where 1 <|vx|<n

So vx cannot contain all the three symbols 0, 1 and 2. If vx contains only 0's and 1's then we
can choose i such that :v'wx'y has more than 2, occurrences of a 0 (or 1) and exactly 2

occurrences of L. This means y /! y ¢ L ,acontradiction,

In other cases also we can get a contradiction by proper choice of 7. Thus the given language
is not context - free.

Method - II :
Consider the accepted set of strings from the given language
L={0122,0011222,00112222,...}

g 001222

whwxly = 00121 (22)22 = 0 0101122222 ¢ L
.. [isnot context-free.

5.7.2 Ogden's Lemma and Its Applications

There exist some non - context free languages which cannot be proved using the lemma of
section 5.7. We need a stronger result. Ogden's lemma is more powerful than the pumping
lemma. This lemma allows us to fix 'distinguished positions' in the sentence z and puts some
conditions for v, x, y with respect to these positions. Proof of Ogden's lemma is beyond the
scope of this book. However, we present the statement of Ogden's lemma and illustrate its
application.

5.54 FORMAL LANGUAGES AND AUTOMATATHEORY

Statement of Ogden's Lemma

Let L be a context free language. There exists a constant n such that for any sentence z, |z} = n,
we can fix at least n distinguished positions, and z can be written as uvwxy such that

i vxcontains at least one distinguished position,

ii. vwx contains at most ndistinguished positions ; and

fi. any string ofthe form wv'wx’y,i=0 isinL.

Note :

1. Pumpinglemmaof 5.7 is a special case of Ogden's lemma in which every positioninzis
fistinouished.

2. Inapplying Ogden's lemma, choice of distinguished positions is under our control.

Example :
Prove that Z={a'b/c*|i # j, j# k and i # k } isnot context free.
Solution :

If L is context free we can apply Ogden's lemma. Letn be the constant of the

lemma. Consider the sentence » — 47p+n,2#+n , We will choose all positions in the block
of a's as distinguished. z can be split as uvwxy such that (i) vx has at least one distinguished
position and (i) vwx has at most n distinguished positions : By (i), vx should contain at
least one a. These are different cases.

Case 1:

vea® and y ¢p*. Let ;- 57 suchthat 1< p<n.Then,pisdivisorof n!. Letq be the integer
such that pg =n!.

Consider z'= g2 yx29*! ¥
y consists of (2n1+n) ¢'s (remains unchanged).

|
v2q+l =a2pq+p =a2.n P

o 1
uquvl =a" paZn.+p =a2n!+n

Hence in Z, number of a's = number of ¢'s.

CONTEXT FREE GRAMMARS 5.55

Case 2:

veat and yc.*. Let ,_,r and pg=n!. Pumping v and x, (g+1) times, we get :
s wq+lwxq+1y -

InZ',no.ofa'swillbe n-p+nt+p=ntin,

No.of b's in ' will remain n! +n. Hence, no. ofa's =no. of b'sin Z'.

Similarly, in other cases, we can arrive at strings not as per specification of L.
Hence, L is not context free.

5.8 CLOSURE PROPERTIES OF CFLs

The closure properties that hold for regular languages do not always hold for context free languages.
Consider those operations which preserve CFL.

The purpose of these operations are to prove certain languages are CFL and certain languages
are not CFL.

Context-free languages are closed under following properties.
Union
Concatenation and

Intersection
Complementation

Theorem 6.8.1 :If I, and L, aretwo CFLs, thenunionof ; and L, denotedby L; + L,
or L, v Ly is also a CFL.

1
2
3. Kleene Closure (Context-free languages may or may not close under following properties)
4
5

Proof :

Let CFG G, = (V,,T,,P.S) generates L; and CFG G, = (V,,T,,P,S) generates L,
and G=(V,T, P,S) generates L = [; + L,.

We construct G as follows :

Step 1: Rename the variables of CFG G,

Ifv, ={S,4,B,.., X} ,thentherenamed variablesare {S,, 4;, B,,...X;} . Thismodification
should be reflected in productions also.

5.56 FORMAL LANGUAGES AND AUTOMATATHEORY

Step 2 : Rename the variables of CFG G,

If ¥, ={S,4,B,..X}, then the renamed variables are {S,, 4, By...X3}. This
modification should be reflected in production also.

Step 3 : We get of the productions of G, and G, to get productions of G as follows :

S — S;|S,,where S, and S, are starting symbols of grammars G; and G, respectively and
Sy - productions and §, - productions remain unchanged.

T=T,vT,,
V ={Sl’Al’Bl""Xl}u{SZ’Az’B2""X2}

Since, all productions of G; and G, including § — 5; | S, are in context-free form, so
GisaCFG

Language generated by G :
L(G) = Language generated from (S} or S;)
=Language generated from S, or language generated from S,
= L(Gy) or L(G,) (Since, $; and §, are starting symbols of G, and G, respectively.)
= I; or L, (Since, G, produces L, and G, produces L, .)
=L+ 1

Hence, statement of the theorem is proved.

Example : Considerthe CFGs § — aSh|ab and § —> c¢Sdd | cdd , which generate
languages I, and L, respectively. Construct grammar for L = Ly + L.

Solution :
Let G, generates [; and G, generates [, and G = (V,T,P,S) generates L = Iy + Ly.
Renaming the variables of G, and G, , we get

v, =1{S,} and ¥V, ={S,}, where §, - productions are §; — aSpb | ab, and
S, - productions are Sy —» cS»dd | cdd

CONTEXT FREE GRAMMARS 5.57

We define G as follows :
V = {5.5,,8,),
T = {Terminals of Gy or Gy} = {a,b,c,d},
Pincludes: s - S1 | 82, 8, = aS,b|ab ,and §) = eSydd | cdd .
L=4L +1L,
={a"b":m,n>13 L {¢"d* :n21)
Theorem 5.8.2: It Ly and 1, are two CFLs, then concatenation of ; and L, denoted by
I4L, is also a CFL, ,

Proof : Let CFG Gy =(¥,,T,,P,S) generates L and CFG G, =V, 1,3, P,8)
generates L, and G = (v T, P,S) generates [= Lil,.

We construct G as follows :
Step 1: Rename the variables of CFG G,.
Ify, = {§,4.B,.., X} ,then the renamed variables are {5, 4y, By,.. X1} . Thismodification is
reflected in productions also,
Step 2 : Rename the variables of CFG G, :
Ifv, = {§,4,B,... X} , thenthe renamed variables are {S2, 4, By,...X»}. Thismodification
is reflected in productions also.

Step 3 : The productions of G; are followed by the productions of G, to get productions of
G as follows.

8 = 8515;, where §; and S, are starting symbols of grammars G, and G, respectively and
S; - productions and S5 - productionsremainunchanged.

T=TiuT,,

V ={S.4,,8,.., X,}u {S,.4,,B,.., X,}
Since, all productions of Gy and G, including § Sy, are in context-free form, so Gisa

Language Generated by G: ,
L(G) = Language generated from S followed by language generated from A
= L(Gy) L(G,) (Since, §; and S, are starting symbols of G and G, respectively).
= L, (Since, G, produces Ly and G, produces 1, .)
Hence, statement of the theorem is proved.

5.58 FORMAL LANGUAGES AND AUTOMATA THEORY

Example : Considerthe CFGs S — aSb|ab and § — ¢Sdd | cdd , which generate languages
Ly and I, respectively. Construct grammar for L = LI, .
Solution :
Let Gy generates L; and G, generates L, and G = (¥ ,T,P,S) generates [= LiL,.
Renaming the variables of G, and G, , we get
Vi=1{S:} and ¥, = {S,} , where S - productions are : S; — aS;b | ab, and Sy -
productionsare: S, — ¢Sydd | cdd .
We define G as follows :
V.=15.,5,.8,}, £ = {Terminals of Gy or G,} ={a, b, c, d},
Pincludes: § — §;S;, S, - aS,blab ,and S, —> cS»dd | cdd

L=LL,={a™b" :m,nz1}{c"d*" :n21}.

Theorem 5.8.3 : If L is a CFL generated by grammar G = (V,T, P, S) , then Kleene
closure of L denoted by 7 * is also a CFL.

Proof: Letgrammar G' = (V,T,P',S") generates 7 *. We define ' based on given
grammar G ‘

L* = {g, L, LL, LLL,},since J * includes null string, so G has production: §' — ¢
and from other productions, G* has to generate multiples of L. So, we have two recursive
§' -productions : §' — S’ | 'S, where Sis the starting symbol of G

So, P' = {§' €| 88'| S'S} L {S —productions of grammar G}

Since, all productions of ' are in context-free form, so ¢’ isa CFG,

Language generated by ' :
LG = {e L, LL, LLL,..} = L *
Thus, statement of theorem is proved.

Example : Considerthe CFGs § — aSa| aa, which generates [, = {az" : n = 1} . Construct

a grammar, which generates J *.
Solution :

LetG'= (¥ ,T,P",S") generates j *. We define the productions of ¢’ as follows :
S' > €|88|S'S,where S — aSa|aa

CONTEXT FREE GRAMMARS 5.59

Language generated by ' :

§' =€

Hence, e isin L(G").

§' = 8§ (Using §' — S'S)

= S'SS (Using S' — S'S)

= §'SS ... ntimes (Using $' — S'S » times)
=€ §§ ... ntimes (Using §" - ¢)

= $§ ... n times

*

= LL ... n times (Since, G generates language L and Sis the starting symbol of G.)

= It

So, L(G")={e}u L* =L
Theorem 5.8.4: If L, and L, are two CFLs, then intersection of Z; and L, denoted by
Ly n L, may or may not be a CFL.

Proof: We will discuss some examples, which prove the theorem.
Example 1 : Considerthe CFLs L, = {a"b"c™ :m,n21} and L, = {a"b"c" : m,n21},
then intersection of Z; and L, isnota CFL.
Solution:
L, ={abc,aabbce,aaabbbeee,...} and L, = {abc,abbee ,aabbec ,aabbbece ,aaabbbecc ...}
So, I} N Ly = {abe, aabbcc, aaabbbece.,...}
= {a"b"c" :nz21}
Clearly, L; n L, isnota CFL.
Example 2: Considerthe CFLs I, = {a"b": n>1} and L, = {a”b7: p,q=1},then

intersection of Z; and L, isa CFL.
Solution :

L, = {ab, aabb, aaabbb,...} and L, = {ab,aab,aabb,abbb,aabbb, aaabbb,}
So, I, A L, = {ab, aabb, aaabbb,...} = {a*b*: k=2 1}
Clearly, L, n L, isaCFL.

5.60 FORMAL LANGUAGES AND AUTOMATA THEORY

Theorem 5.8. 5 : If L isa CFL over some alphabet 7, then complement of L denoted by
7 * - 1 may or may not be a CFL.
Proof :

We will discuss some mathematical identities to prove this theorem. Letus assume that complement
ofaCFL isalso CFL.Itmeans, 7 - 7+ _ isCFL.

Let R and S are two CFLs over 7, then we know that

RAS=T*-(RuS) (De Morgan's law)

Since, we have assumed that complement of CFL is also a CFL,so g and § are CFLsand
hence p = R § isa CFL (Pis union of two CFLs).

So, RnS=T*-p

OLRAS =P

Since, Pisa CFL, so p isa CFL.

Thus, g s isaCFLi.e., intersection of CFLs R and S isa CFL.

But, according to Theorem 5.8.4, R ~ § may or may not be a CFL. So, our assumption
about complement of a CFL is not hundred percent correct.

Since, intersection and complement are interchangeable using De Morgan's law. so whatever

the truth about intersection we have proved that is also applicable to complement.
Therefore, we conclude that complement of a CFL may or may not be a CFL.

We will discuss some examples, which prove the theorem.

Example 1:

Considera CFL Lover T = {a,b} which contains all the strings that not have the number of a's

and b's equal or if number of a's and b's are equal then no two a's or b's are consecutive, then
7* - isaCFL.

Solution :

L={ All strings over {a, b} not having number of a's and b's equal } or {All strings over {a, b}
which have number of a's and b's equal but no two a's and b's are consecutive}
So, L = {e, aab, baa, aaab, ...} U {ab, abab, baba, ...}
= {e, ab, aab, baa, aaab, baaa, abab, baba, ...}

CONTEXT FREE GRAMMARS 5. 61

Simply, L = (a + by * —{a*B* % 2}
80, " ~ L =(a+b)* ~((a+b5)*—{a"b":n>2})

= {All the words over {a, b} having equal number of a's and b's and alla'sand b's are
consecutive}

= {a"b* k>
Clearly, 7+ _7 isaCFL.

Example 2:

Considera CFL L over {a, b, ¢} havingall the strings in which number of a's » humber of b's and
number of ¢'s are not equal or if number of a's,b'sand ¢'s are equal then no two a's,b'sand ¢'s
are consecutive, then T* - L is nota CFL,

Solution :

L={e,ab,ec,ab, ba, ac, ca,....} U {abc, abcabe, acabcb,...}
= {& a,b,c, ab, ba, ac, ca, aaa, bbb, ccc, abe,...}

Simply, . = (a + b + c}* ~{a"b"" : n22)
Let 7 = {a,b,c} then
T - L = {aabbcc ,aqabbbece)

= { All the words over {q, 5, ¢} having equal number of a's, b's and ¢'s and all a's, b's
and ¢'s are consecutive}

= {@"b"c™ n>2}
Clearly, 7+ _ ; isnotaCFL.

5.62 FORMAL LANGUAGES AND AUTOMATATHEORY

REVIEW QUESTIONS

Q1. Define context free grammar.
Answer :

For Answer refer to Topic : 5.1, Page No : 5.1.

Q2. Consider the grammar G = (¥, T, P, S) having productions :
§ — aSa | bSh| €. Check the productions and find the language generated.
Answer :

For Answer refer to example - 1, Page No : 5.1.

Q3.LetG=(V,T,P.S)whereV={S,C},T={a,b}
P={ § —» aCa
¢ —aCa|b
} S is the start symbol
What is the language generated by this grammar ?
Answer :

For Answer refer to example - 2 , Page No : 5.2.
Q4. What s the language generated by the grammar

S—>04|€
A—>18
Answer :
For Answer refer to example - 3 , Page No : 5.2.
QS. Show that the language L ={a™b" |m=n} is context free.
Answer :
For Answer refer to example - 4 , Page No : 5.3.
Q6. DrawaCFG to generate a language consisting of equal number of a's and b's.
Answer :
For Answer refer to example - 5§, Page No : 5.4.
Q7. Construct CFG for the language L which has all the strings which are all

palindromesover ' ={a,b}
Answer : ;
For Answer refer to example - 6 , Page No : 5.5.

CONTEXT FREE GRAMMARS 5.63

Q8. obtain a CFG to generate integers .
Answer :

For Answer refer to example - 7, Page No : 5.6.

Q9. Obtain the grammar to generate the language L ={ 0"1"2"| m> 1 and n >0}
Answer :
For Answer refer to example - 8 , Page No : 5.6.

Q10. obtain a grammar to generate the language 7, = {0 1" |n20} .

Answer :
For Answer refer to example - 9 , Page No : 5.7.
Qll. Obtain the grammar to generate the language /, = {w|n, (w)= n(w) }
Answer :
For Answer refer to example - 10, Page No : 5.8.
Q12. Explain about leftmost and right most derivations,

Answer ;
For Answer refer to Topic : 5.2, Page No : 5.9.

Q13. Consider the grammar § — § + S| § * Slalb.Find leftmost and rightmost
derivationsforstring W=a*ag4ph.
Answer :
For Answer refer to example - 1, Page No : 5.9,
Q14. Considera CFG § - bd|aB, A - aS|addla, B -» bS|aBB| b . Find
leftmost and rightmost derivations for ,, — aaabbabbba .
Answer :
For Answer refer to example - 2 , Page No : 5.10.
Q15. Explain derivation tree with an example,
Answer :
For Answer refer to Topic : 5.3, Page No : 5.11.

5.64 FORMAL LANGUAGES AND AUTOMATA THEORY

Q16. Consider the grammar § —» § + §] § * S| a} b . Construct derivation tree for
Sb'ing w=a*b+a.
Answer :

For Answer refer to example - 1 , Page No : 5.12.

Q17. Consider a grammar ¢; having productions S —> adS|a, A - SbA| SS| ba.

Show that § = aabbaa and construct a derivation tree whose yield is aabbaa.

Answer :

For Answer refer to example - 2 , Page No : 5.13.
Q18. Consider the grammar G whose productions are

S —> 08|14, 4 — 0|0S[l4A4, B —» 1|1S}0BB . Find
(a) Leftmost and(b) Rightmost derivation for string 00110101, and constructderivation tree also.
Answer :

For Answer refer to example - 3 , Page No : 5.14.
Q19. What is ambiguity in CFGs ? Explain .
Answer :
For Answer refer to Topic : 5.4, Page No : 5.14.
Q20. Considerthe CFG S —» S + S[S * S|a|b andstring y = g * ¢ + b ,and
derivations as follows:
Answer ;
For Answer refer to example - 1 , Page No : 5.15.
Q21. Show that the following grammars are ambiguous.
(@) S —> SS|alb
(b) S > A|B|b, A > adB|ab, B — abB|e
Answer :

For Answer refer to example - 2 , Page No : 5.15.
Q22. What is left recursion ? Explain procedure to eliminate left recursion.
Answer :

For Answer refer to Topic : 5.4.1.1, Page No : 5.17.

CONTEXT FREE GRAMMARS 5.65

Q23. Eliminate left recursion from the following grammar

E- E+T|T

TS>T*F|F

F—(E) |id
Answer :

For Answer refer to example - 1, Page No : 5.17.
Q24. Eliminate left recursion from the following grammar

S = 4bla
A — Ab|Sa
Answer ;

For Answer refer to example - 2, Page No : 5.18.
Q25. What is left factoring? Explain procedure to eliminate left factoring,
Answer :

For Answer refer to Topic:5.4.1.2,, Page No : 5.19.
Q26. Consider the grammar § —» aSa | aa and remove the left factoring (ifany).
Answer :

For Answer refer to example , Page No : 5.19.
Q27. What is useless symbol ? Explain procedure to removal of useless symbols.
Answer ;

For Answer refer to Topic:5.5.1, Page No: 5.21.
Q28. Eliminate the useless symbols in the grammar

S - aA| bB
A - aA|a
B - bB

D - ab lEa
E > aC|d

Answer :

For Answer refer to example - 1, Page No : 5.23.

5.66 FORMAL LANGUAGES AND AUTOMATA THEORY

Q29. Eliminate the useless symbols in the grammar

S - aAla|Bb|cC
A =% aB

B - alAa

C - c¢CD

D - ddd

Answer :

For Answer refer to example - 2 , Page No : 5.25.

Q30. Whatis < - production ? Explain procedure to removal of «— productions.

Answer :

For Answer refer to Topic : 5.5.2 , Page No : 5.26.
Q31. Eliminate all ¢ - productions from the grammar

S - ABCa|bD
A > BC|b

B - bl e

C - cle

D - d

Answer :

For Answer refer to example - 1, Page No : 5.28.

Q32. Eliminate all - productions from the grammar

S - BAAB
A —> 0A2 |2A0] e
B - AB|IB| ¢

Answer :

For Answer refer to example - 2 , Page No : 5.29.
Q33. What is unit production? Explain procedure to elimination of unit productions.
Answer :

For Answer refer to Topic : 5.5.3, Page No : 5.30.

CONTEXT FREE GRAMMARS

Q34. Eliminate all unit productions from the grammar

AB
a

Clb
D
E|bC
d| Ab

MO0 waA @
SR TR N A

Answer :
For Answer refer to example - 1 , Page No : 5.32.

Q3S. Eliminate unit productions from the grammar

S - AO|B
B - AN
A - 0112|B

Answer :
For Answer refer to example - 2, Page No : 5.33.

Q36. State and prove CNF.,
Answer ;

For Answer refer to Topic : 5.6.1, Page No : 5.35.

Q37. Consider the grammar

S - OAl1B

A -> 0AA|1S]|1

B - 1BB|0S|0 Obtain the grammar in CNF .
Answer :

For Answer refer to example - 1, Page No : 5.37.

Q38. Find a grammar in CNF equivalent to the grammar :

S>-S[[STS]|a|b
Answer :

For Answer refer to example - 2, Page No : 5.39.

5.67

5.68 FORMAL LANGUAGES AND AUTOMATA THEORY

Q39. State and prove GNF.
Answer :

For Answer refer to Topic : 5.6.2 , Page No : 5.41.
Q40. Consider the CFG S—S+8|S*S|a| b and find an equivalent grammar in GNF.
Answer :

For Answer refer to example - 1 , Page No : 5.43.

Q41. consider the grammar G = ({4,,4,,4,},{a,b},P,4,) , where P consists of
following production rules.

Ay > Ay Ay, A, > A3 A,|b, A3 A, 4,|a Convert itinto GNF.
Answer :
For Answer refer to example - 2 , Page No : 5.43.
Q42. Find equivalent grammar in GNF.
(a) S > aB|bA,A > aS|bAA|a,B - bS|aBB|b
(b) S —» abSb|a|aAb,A - bS|aAAb
(c) S—» AA|O,A - SS|1
For Answer refer to example - 3 , Page No : 5.45.

Q43. state and prove Pumping lemma for CFL's.
Answer :
For Answer refer to Topic : 5.7, Page No : 5.46.

Q44. Consider the language L ={a" b" ¢":n > 1} and prove that L isnot CFL.

Answer :
For Answer refer to example - 1, Page No : 5.50.

Q45. Prove that following languages are not CFL
(@) L = {aP : p is a prime number}_
B L = a"b™e"d™ :m,n>1}

(©L={"b"¢":m > n}
Answer :

For Answer refer to example - 2 , Page No : 5.50.

CONTEXT FREE GRAMMARS 5.69

Q46. Show that the following language is not context free o {anz /n >1-

Answer :

For Answer refer to example - 3 | Page No : 5.52.

Q47. Show that the following language is not context-free L={0"1"2"/m <n < 2m}.
Answer :
For Answer refer to example - 4 , Page No : 5.53.
Q48. State ogden's lemma _
Answer :

For Answer refer to Topic:5.7.2, Page No : 5.53.
Q49. Prove that ;- {a'b/c*lizj, jekandi=k } is not context free.
Answer :
For Answer refer to example , Page No : 5.54.
Q50. Write and prove closure properties of CFLs.
Answer :
For Answer refer to Topic: 5.8, Page No : 5.55.

'5.70 . FORMAL LANGUAGES AND AUTOMATATHEORY

[OBJECTIVE TYPE QUESTIONS j

1. Acontext free grammar which generates {db" " |I+m=n) has its production rules given by
(a) S —>aS, S—>aSy,8) —>bS), 8] —>bS3,5 ~5S3,53 >cS3| ¢
(b) S —>cSb, c§—5c, bS—>8b,S > aSy ¢, S} >aSc, S —»ac
(c) S —>asSc|ac|bc|bSyc,$)—>bSjclbe
(d) S —>bSc|aSc|ac|a|bS),5; S ¢lc
2. Lettwokinds of grammars be defined as follows.
(I) A»a, A BC (I) A— aa,where 4 BCeV, AeV and ¢ cp*

(a)I denotes Chomsky Normal form but Il does not denote Greibach Normal Form.
(b) I denotes Chomsky Normal form and II denotes Greibach Normal Form.

(c) I denotes Chomsky Normal form but I does not denote Greibach Normal Form.
(d) Il denotes Chomsky Normal form and I denotes denote Greibach Normal Form

3. Thelanguage 1={a" " c"d™ in>1, m=1}
(a) abstracts the problem of checking number of formal and external parameters

(b) is context free (c) is not context free
(d) (a) and (c)
4. CFGisnotclosed under
(a) product (b) complementation (c) Kleene star (d) Union
5. Theintersection of a CFL and regular language
(a) Is always context free (b) Isalways regular
(c) need not be context free d) need not be regular
6. Which ofthe following languages cannot be produced by a Context Free Grammar?
(@) L={a" 6" c" :n> 0} (b) L={ww® :we {a, 5"}
(©) L={a"b* : k>n20} d) L={a"b" :n >0}
7. Every CFG is ambiguous
(a) some times false (b) sometimestrue (c) false (d) true
8. Considerthe language L={ a”:pis prime}
(a) CFL (b)RL (c) both (d) None

9. Agrammar G is known to have GNf representation then
(a) G can't be written left or right linear
(b) we can write G as left linear or right linear
(¢) G may be written as left linear or right linear (d) None of these.

CONTEXT FREE GRAMMARS 5.71

10.

11.

12.

13.

14,

15.

16.

17.

18.

19,

L={ww" where w belongs to (,1)" is

(a) Context Free (b) Context sensitive (c) both (d) None
A Grammar G has productions oftype A—aB 4 Ba 44 thenGis

(a) CF (b) regular (c) both (d) none
Let G be the grammar s —» ad, A— Abb|b, sentential forms of G are,

(a) a4p?", ap2" where, p> g (b) ad#” ,ab?*! where, p>0
(©) a4p?, ap2r where, ,s (d) None of above

Which of the following grammars can generate v - gabph
(a)S-—aAb‘,A-éBB{a,B-)AB[b (b)S-—)AB,A-—-)aAla.B»bB[b
(¢) Both (d) None

A CFLisin CNF if every production is of form S— 4 or §— ¢ where 5 isin ¥
(a)Aisinz‘&B,c arein ¥* (b)Aisinz&B,CareinV

() Aisin L&B,C arein V' * (d)Aisin 2" & p, Carein v
The grammar having production as 4 - B, where AeV ,Be(V W), is

(a) Type 3 (b) Type 2 () Type 1 (d) Type 0
The grammar generated by production rules § —» aSBc| abe,cB —» Be,aB - aa is

@) a"b%" n<o () a b nso

(©) a"p%" pso (d) a" 57" 51

Which of the following languages is context free?

@ L={a":1<m (b) L=(a™ " c": msns 2y

(€) L={a"™b" : n=m?) (d) None of the above

Let L be a context free language. Then for cevery zel, and some strings u,v,%,x and
yeL Then we can find anatural number n such that

(@) whi yer forall k=0 : ®)with |z|>n can be written as uvwxy.
©) Jox[2 1. n210 wx| (d) all of the above

What is the correct sequence of steps to construct an equivalent reduced grammar?

(A) Construct equivalent Grammar Gy such that each variable derives some terminal string,
(B) Comtnm@xivalaqumer’wdmdnteachs;mbol inG'appears in some sentential form,
(C) Eliminate null productions, (D) Eliminate unit productions.

(8 BADC (b) ABCD (c)BCDA @CDBA

5.72

FORMAL LANGUAGES AND AUTOMATA THEORY

20.

21,

22.

23.

24,

25.

Which of the following grammars is ambiguous?
(b) S — a|abSbiadb, A —>bS|adAb
(d)all of the above

(3) S S+5|S*S|a|b
(¢) S-»aB|ab,A— adB|a, B> ABb|b

Any string of terminals that can be generated by the following CFG

S— XY

X —>aX|bX|a

Y—>YdYbla
(a) Has atleast two a
(c)Shouldend ina

(b) Has no consecutive aorb
(d) Has at leastone b

The grammar {S —>as|bS|a| b} is notequivalent to

(@) (@a+b)* (@+b)

(®) (@+b) (a+b)*
Which of the following statements is true?

(¢) (@*+»)* (d)None of the above

(i) Aregular setaccepted by a deterministic finite automaton with n states is accepted to
final state by a deterministic pda with n states and one pushdown symbol.
(i) Every regular set accepted by a finite automaton with n states is accepted by a
deterministic pda with one state and n pushdown symbols
(1) If L is accepted by a deterministic pda A, then it can be shown that L is accepted by
adeterministic pda A which never adds more than one symbol at a time.

(@) (1), (ii) and (iii) (b) (1) and (iii) only
(c) (ii) and (iii) only (d) (i) and (ii) only
Match the language with the corresponding machine :

Language Machine
(1) Regular language (A) Nondeterministic pushdown antomaton
(ii)) DCFL (B) Turing machine
(i) CFL (C) Deterministic pushdown automaton
(iv) context-sensitive language (D) (Non)Deterministic finite-state acoeptor
(v) Recursive language (E) Turing machine that halts
(vi) Recursively enumerable language (F) Linear-bounded automaton
(@aDACFEB () DCAFEB
(ccDCABEF ()DCFEAB

The grammar that generates £-{a" p" ¢! |n =1,i=0} is,

() S — adb|Sc, A—> ab|adb
(c) Any one of the two

(b) S — 4| Sc, A—> abladb
(d) None of the two.

CONTEXT FREE GRAMMARS 5.73

26.

217.

28.

29.

30.

The grammar that generates L={wew' (wefa, b} +} is,

(@) §-> aSa| bSB| ¢ (b) S aSa| bsb| aca) beb
(c) Any one of the two (d) None of the two.

Let 7={0,1,(,), +*, phi,e}. We may think of Tas set of symbols used regular expressions
overalphabet {0,1}; the only different is that we use e for symbol epsilon, to avoid potential
confusion in what follows. The CFG with set of terminals that generates exactly the regular
expressions with a alphabet {0,1} is :

(a) S>S+8|85]8"1()]0]1]phile (b) S§>S+5|88*|S* () 011]p[e
(c) S-S+8|S5|5](5)|0|1]phi|e (d) none is possible
The CFG for the following language :

The set {0"1"[n> 13, that is the set of all strings of one or more 0's followed by an equal
number of 1's s :

(@) § - 0510/ epsilon.) S~ 051]01|epsilon
(c) s—081/01 (d) None of the above
Which of the following is true

(@) S—aB, B B |6 isambiguous
(b) S — 4B|aaB, 4 - a| Aa, B— b isunambiguous
() S >aB|ah 4 ~>adB| a, B-» ABH b is ambiguous

(d) S > asbs) bSaS|e is unambiguous

Choose the correct statements -

(@) some regular languages can't be generated by an CFG

(b) some non regular languages can't be generated byan CFG
(c) any regular language has not an equivalent CFG

(d) all languages can be generated by CFG

e

ANSWER KEY

1©) — 20) 3@ 4b) 5@ 6w 7€) 8(d)) 10(c)
(e) 12() 13(a) 14(b) 15(b) 16(b) 17(d) 18(c) 19(d) 20(d)
21@) 22) 23@a) 24(b) 25(b) 26(a) 27(a) 28(c) 29(c) 30(b)

—_—

—_— —_

FORMAL LANGUAGES & AUTOMATA THEORY

UNIT- IV
PUSHDOWN AUTOMATA

6

PUSH DOWN AUTOMATA

After going through this chapter, you should be able to understand :

Push down automata

Acceptance by final state and by empty stack
Equivalence of CFL and PDA

Interconversion

Introduction to DCFL and DPDA

6.1 INTRODUCTION

APDA is an enhancement of finite automata (FA). Finite automata with a stack memory can be
viewed as pushdown automata. Addition of stack memory enhances the capability of Pushdown
automata as compared to finite automata. The stack memory is potentially infinite and it is a data
structure. Its operation is based on last - in - first - out (LIFO). It means, the last object pushed
on the stack is popped first for operation. We assume a stack is long enough and linearly arranged.
We add or remove objects at the left end.

6.1.1 Model of Pushdown Automata (PDA)

A model of pushdown automata is shown in below figure. It consists of a finite tape, areading
head, which reads from the tape, a stack memory operating in LIFO fashion.

«—— Input Tape

Reading __j\
Head
> &
Finite State Control s «— Stack

FIGURE : Model of Pushdown Automata

6.2 FORMAL LANGUAGES AND AUTOMATATHEORY

There are two alphabets ; one for input tape and another for stack. The stack alphabet is denoted
by r and input alphabet is denoted by 5 . PDA reads from both the alphabets ; one symbol
from the input and one symbol from the stack.

6.1.2 Mathematical Description of PDA
A pushdown automata is described by 7 - tuple (Q,2,I',8, 4,Z.F) » where
1. @ isfinite and nonempty set of states,

2. ¥ isinputalphabet,

3. T isfinite and nonempty set of pushdown symbols,

4, & isthe transition function which maps

From Q x (Z U {&}) x I to (finite subset of) O x I'*,

g, € O, isthe starting state,

. Z, e I',isthestarting (top most or initial) stack symbol, and
7. F ¢ Q,isthesetoffinal states.

o v

6.1.3 Moves of PDA
The move of PDA means that what are the options to proceed further after reading inputs in

some state and writing some string on the stack. As we have discussed earlier that PDA is

nondeterministic device having some finite number of choices of moves in each situation.
The move will be of two types :

1. Inthe firsttype of move, an input symbol is read from the tape, it means, the head is advanced
and depending upon the topmost symbol on the stack and present state, PDA has number of
choices to proceed further.

2. Inthe second type of move, the input symbol is not read from the tape, it means, head is not
advanced and the topmost symbol of stack is used. The topmost of stack is modified without
reading the input symbol. It is also knownas an ¢ -move.

Mathematically first type of move is defined as follows.

5(q,a,Z) = {(py.a)(P3:@3) Pysx,)} , Where for 1 < i < n,q, p, are states in
OQ,aeck, Zeland ael*.
PDA reads an input symbol a and one stack symbol Z in present state ¢ and for any value(s) of
i, enters state p, , replaces stack symbol Z by string «, eI" * , and head is advanced one cell on
the tape. Now, the leftmost symbol of string ¢, is assumed as the topmost symbol on the stack.
Mathematically second type of move is defined as follows.
8(q,€,2) = {(1@)(P2s @3)se(Pys@,)} » Where for 1 < i < n,q, p, are states in
Q,ael, Zel,and ;T *.

PUSHDOWN AUTOMATA 6.3

PDA does not read input symbol but it reads stack symbol Z in present state ¢ and for any
value(s) of i, enters state p, , replaces stack symbol Z by string «, < I' *, and head is not

advanced on the tape. Now, the leftmost symbol of string «, is assumed as the topmost symbol
on the stack.

The string «, be any one of the following :

l. @, = inthiscase the topmost stack symbol Z,,, is erased and second topmost symbol
becomes the topmost symbol in the next move. It is shown in figure (a).

a b . b
o [A 7
a F _x. | Z;
Z"’ P; I
—-q| . 1 6 -

FIGURE(a): Move of PDA

2. a, = c,c e I ,inthis case the topmost stack symbol Z,,, is replaced by symbol c. Itis

3.

shown in figure(b)
L a b LR - b LI
= ey [
Z, ‘—2"_'
il M _
>—r q . 1)

FIGURE(b): Move of PDA

@, = ¢,¢,..C,, »inthis case the topmost stack symbol Z,,, isreplaced by string c,c;...c,,-
Itis shown in figure(c).

6.4 FORMAL LANGUAGES AND AUTOMATATHEORY

' a i bl|° b
| 3 |- P -
—— R ¥4 — G
| ' 2 | L
! Zl-l |E:> ! %
o—-o-q g : ‘ P,‘—‘ . .C.m
1 ' | :Z‘
; .

FIGURE(c): Move of PDA

6.1.4 Instantaneous Description (ID) of PDA

LetPDA M = (0,213,494, Zy,F) , thenits configuration at a given instant can be defined by
instantaneous description (ID). An ID includes state, remaining input string, and remaining stack
string (symbols). So,anID is (¢,x,a) ,where ge Q. xe Z*, a e I' *.

The relation between two consecutive IDs is represented by the sign I—— 3

We say (g,ax,Zp3) lﬁp,x,aﬂ) if 8 (¢. a, Z) contains (p,a), where Z,B,ac'*,a
maybenullora €%, p,qg € Q for M

The reflexive and transitive closure of the relation |7 is denoted by |—;}
Properties :

1. If (q,x,a)l—h}(p,E,a),where ael*xeX*,and p,g €Q,thenforall y eZ *.
@9,)P y.@),

2. If (q.xy,a)lx}(p,y,a), where a eTI'*x,yeZ*, and p,q € Q, then
(q,x,a)|,,%(p,e,a), and

3. If (q,x,a)|,.%(p,e,ﬂ), where a, Bel*xef*, and p,geQ, then

(g,x r)l—,f,(p,e,ﬂr), where y eI" *

PUSHDOWN AUTOMATA 6.5

6.1.5 Acceptance by PDA

Let M'be a PDA, the accepted language is represented by N(M). We defined the acceptance by
PDA in two ways.

1. Let M =(Q,ZT,8, q,.Z,,F) ,then N(M) is accepted by final state such that
N (M)=(w{(qo:W,Z)|34a€.8) , where ¢ € 0, weZ*Z,,feT*, and
qy e F}

It is similar to the acceptance by FA discussed earlier. We define some final states and
the accepted language N(M) is the set of all input strings for which some choice of moves
leads to some final state.

2. Let M =(Q.E.[.,5.9,,Z,.4),then N(M) is accepted by empty stack or null stack such
that N(M)= {w:(qn,w,Zo)IT}(p,e,e), where p € O, w e 2%}
The language N(M) is the set of all input strings for which some sequence of moves
causes the PDA to empty its stack.

Note : Ifacceptance is defined by empty stack then there is no meaning of final state and it is
represented by ¢ .

Example : COnSider a PDA M= ({qu 4,49 }3{‘1’ C},{G,Zo },6,Qo sZD :{q2 }) Shown in
below figure. Check the acceptability of string aacaa.

a, Zy, azZ, a,a, €

a,a,aa
FIGURE : PDA accepting {a"ca" :n =1}

Note : Edges are labeled with Input symbol, stack symbol, written symbol on the stack.

6.6 FORMAL LANGUAGES AND AUTOMATATHEORY

Solution :
The transition function § is defined as follows :

8(q0+a,2) = {(q0,9Z)} »
8(qq,a,a) ={(g9.aa)},
8(gq5¢,a) ={(4,9)} »
8(q,,a,a) ={(q,€)}, and

8(q,56:2¢) ={(q2,24)}
Following moves are carried out in order to check acceptability of string aacaa :

(gq,aacaa ,Zo)l-{qo,acaa saZgy)
—(q,,caa ,aaZ)
—(q,,aa,aaZ ;)
—(q,,a,aZ ;)
(41.6.Z,)

—q,.€,2Z,)

Hence, (qo ’aacaa ’Zo ﬂ%{qz ,G ’ZO) .
Therefore, the string aacaa is accepted by A7.

6.2 CONSTRUCTION OF PDA

In this section, we shall see how PDA's can be constructed.

Example 1 : Obtain a PDA to accept the language L(M) = { wCw®| w e (a+b)*} where
{

R isreverse of W.
Solution:

Itis clear from the language L(M) = { wCw"} thatif = abb

then reverse of w denoted by gr& will be % _ pp, and the language L willbe yc®
i.e., abbCbba which is a string of palindrome.

PUSHDOWN AUTOMATA 6.7

So, we have to construct a PDA which accepts a palindrome consisting of a's and b's with
the symbol C in the middle. '

General Procedure :

To check for the palindrome, let us push all scanned symbols onto the stack till we encounter
the letter C. Once we pass the middle string, if the string is a palindrome, for each scanned input
symbol, there should be a corresponding symbol (same as input symbol) on the stack. Finally, if
there is no input and stack is empty, we say that the given string is a palindrome.

Step 1 : Input symbolscanbeaorb.
Let g, be the initial state and Z, be the initial symbol on the stack. Instate g, and whentop

of the stack is Z;, whether the input symbol is a or b push it on to the stack, and remain in g .
The transitions defined for this can be of the form

8 qo, a, Zy) = (qo, aZy)

5(q0’ b, Zo) T (qO! bZO)
Once the first scanned input symbol is pushed on to the stack, the stack may contain either
aorb. Now, in state g, , the input symbol can be either a or b. Note that irrespective of what is

the input or what is there on the stack, we have to keep pushing all the symbols on to the stack,
till we encounter C. So, the transitions defined for this can be of the form

(g, a, a) = (qo, aa)
3(qq; b, @) = (4o, ba)
(g, a, b) = (qo, ab)
8(qq, b, b) = (gq, bb)

Step 2 : Inputsymbol is C

Now, if the next input symbol is C, the top of the stack may be a or b. Another possibility is
that, in state g, , the first symbol itself can be C. In this case w is null string and Z, will be on the
stack. In all these cases, the input symbol is C i. e., the symbol which is present in the middle of
the string. So, change the state to g, and do not alter the contents of the stack. The transitions
defined for this can be of the form

6(94,C.24)=(q1:2Zy)
8(q0.C,a)=(q,.a)
8(g0,C,b)=(q,,b)

Now, we have passed the center of the string.

6.8 FORMAL LANGUAGES AND AUTOMATATHEORY

Step 3 : Input symbolscanbe aorb.
To be a palindrome, for each input symbol there should be a corresponding symbol (same
as input symbol) on the stack. So, whenever the input symbol is same as symbol on the stack,

remain in state ¢, and delete that symbol from the stack and repeat the process. The transitions
defined for this can be of the form

5(qlsas a) = (g, ©
(g, b,b) = (g5 ©

Step 4 : Finally, in state g, , if the string is a palindrome, there is no input symbol to be scanned
and the stack should be empty i. ., the stack should contain Z,. Now, change the state to ¢, and
do notalter the contents of the stack. The transition for this can be of the form
oqy, & Zy) = (92.4p)
So, the PDA M to accept the language L(M) = {wCw"| w e(a,b) * } is given by
M =(Q.2.1.6.94,2,,F)
Where O0={q. .92 }; 2={a,b,C}; I'={ab 7}
& : is shown below,
6(4go: a. Zy) = (g0, GZy)
0(q0, b, Zy) = (g0, bZ;)
6(qq. a, a) = (go, aa)
3(qo, b, @) = (o, ba)
8(qp: a, b) = (gy, ab)
3(go, b, b) = (g0, bb)
0(q0,C.Z4)=(q1,Z)
d(g4,C,a)=(q,,a)
6(q0,C,b)=(q,,b)
6(q,a,a) = (q,, @
6(q.5,0) = (g1, 9
(g eZy) = (@ Zy)

g, € Q is the start state of machine.
Z, eI isthe initial symbol on the stack.
F ={q,} isthe final state.

PUSHDOWN AUTOMATA 6.9

To accept the string :

The sequence of moves made by the PDA for the string aabCbaa is shown below.
Initial ID

(90, aabCbaa, Z;) (o (gq, abChaa, aZy)
- (g9, bCbhaa, aaZy)
|- (90, Cbaa, baaZy)
|- (gq1,baabaaZ,)
= (g1,aa,aaZ,;)
[- (91,0,0Z,)
l R (QDE’ZO)
- (92, & Z)
(Final Configuration)
Since g, is the final state and input string is € in the final configuration, the string aabCbaa
is accepted by the PDA .

To reject the string :
The sequence of moves made by the PDA for the string aabCbab is shown below .

Initial [D
(90, aabCbab, Z,) = (g0, abCbab, aZ,)
- (g0, bCbhab, aaZy)
|- (g0, Chab, baaZy)
- (g1, bab, baaZ,)
F (9;, ab, aaZy)
= (g b, aZy)
(Final Configuration)
Since the transition &(q,, b,) isnot defined, the string aabCbab is not a palindrome and
the machine halts and the string is rejected by the PDA.

Example 2 : Obtain a PDA to accept the language L = { a" " n= 1} by a final state.
Solution :

The machine should accept n number of a's followed by n number of b's.

6.10 FORMAL LANGUAGES AND AUTOMATATHEORY

General Procedure :

Since n number of a's should be followed by n number of b's, let us push all the symbols on
to the stack as long as the scanned input symbol is a. Once we encounter b's, we should see that
for each b in the input, there should be corresponding a on the stack. When the input pointer
reaches the end of the string, the stack should be empty. If stack is empty, it indicates that the
string scanned has n number of a's followed by n number of b's.

Step 1: Let g, be the start state and Z; be the initial symbol on the stack. As long as the next
input symbol to be scanned is a, irrespective of what is there on the stack, keep pushing all the
symbols onto the stack and remain in ¢, . The transitions defined for this can be of the form

(go,a:Z) = (90> aZy)
6(4qp.a.a) = (4o, aa)
Step 2 : Instate ¢, , if the next input symbol to be scanned is b and if the top of the stack is a,
change the state to ¢, and delete one b from the stack. The transition for this can be of the form
5(gp.b.a) = (g1, &

Step 3 : Once the machine is in state g, , the rest of the symbols to be scanned will be only b's
and for each b there should be corresponding symbol a on the stack. So, as the scanned input
symbol is b and if there is a matching a on the stack, remain in g, and delete the corresponding
a from the stack. The transitions defined for this can be of the form

6 (Ql ,b’a) = (qls G)

Step 4 : In state g, , if the next input symbol to be scanned is e and if the top of the stack
is Z,., (it means that for each b in the input there exists corresponding a on the stack) change the
state to g, which is an accepting state. The transition defined for this can be of the form
5(q.2) = 2.9
So, the PDA to accept the language L={a" d"|n>1} isgivenby M = (Q.E,1',0,9¢,Z,.F)
where 0= {4y, 41, 92} E={a, b}; T={a 2}
& : is shown below.

0(4¢,a,24)=(q¢,aZ)

S (9o a, @) = (90, 9a)

5 (40, b, @) = (g1, ©

PUSHDOWN AUTOMATA 6.11

d(q b a) =(q), 9
(g, & 2Zy) = (a3, ©
gy €Q is the start state of machine
Z, eT isthe initial symbol onthe stack
F ={q,} isthe final state.

To accept the string :
The sequence of moves made by the PDA for the string aaabbb is shown below.

Initial ID
(qq, aaabbb, Z,) - (qq, aabbb, aZy)
I (g9, abbb, aaZ,)
- (90, bbb, aaaZ,)
F (q bb,aaZ;)
- (@, b, aZy)
I— (g:.€, Z4)

I_ (‘h » 6 Zo)
(Final Configuration)

Since ¢, is the final state and input string is € in the final configuration, the string aaabbb
is accepted by the PDA.

To reject the string :
The sequence of moves made by the PDA for the string aabbb is shown below.

Initial ID
(gy,aabbb.Z;) |- (g0, abbb, aZy)
= (g0, bbb, aaZ,)
F (91, bb,aZy)
- (9, b Zy)
(Final Configuration)

Since the transition 8(g,,b, Z) is not defined, the string aabbb is rejected by the PDA.

= o=

6.12 FORMAL LANGUAGES AND AUTOMATA THEORY
Example 3 : Obtain aPDA to accept the language L(M) = { wlw €(a +b) and n, (w) =n,(w)}-

solution :

The language accepted by the machine should consist strings of a's and b's of any length.
Only restriction is that number of a's in string w should be equal to number of b's . The order of
a's and b's is irrelevant. For example aaabbb, ababab, aababb etc. are all the strings in the
language L(M).

General Procedure :

The first scanned input symbol is pushed on to the stack. From this point onwards, if the
scanned symbol is same as the symbol on to the stack, push the current input symbol on to the
stack. If the input symbol is different from the symbol on the top of the stack, pop one symbol
from the stack and repeat the process. Finally, when end of string is encountered, if the stack is
empty, the string w has equal number of a's and b's, otherwise number of a's and b's are different.

Step 1: Let g, be the start state and Z, be the initial symbol on the stack. When the machine
isin state g, and when top of the stack contains Z,, scan the input symbol (either a or b)and
push it on to the stack. The transitions defined for this can be of the form.

5(40, @, Zg) = (q0> 9)

0(qo, b, Zy) =(q0, bZp)

Step 2 : Once the first input symbol is pushed on to the stack, the top of stack may contain
either a or b and the next input symbol to be scanned may be a or b. If the input symbol is same
as the symbol on top of the stack, push the current input symbol on to the stack and remain in

state g, only. Otherwise, pop an element from the stack. The transitions defined for this can be
of the form 8(gy, a, @) = (g, aq)

5(go. b, b) =(go, bb)

5(go, 0, b) =1(q0, ©

5(qp, b, a) =(g0, ©

Step 3 : Instate g, if the next symbol to be scanned is e (empty string) and top of the stack

is Z,, it means that for each symbol a there exists a corresponding b and for each symbol b, there
exists asymbol a. So, the string w consists of equal number of a's and b's and change the state to
gy . The transition defined for this can be of the form

5(90> & ZO) =(fh» ZO)

PUSHDOWN AUTOMATA 6.13

So, the PDA to accept the language L= {w|n,(w)=n,(w)} isgivenby M = (Q,Z,I,6,94.Z,,F)
where O0={q, ¢ }; E={a,b};T={abZ}
& : isshown below
6(q¢,a,Z,)=(q4,0Z,)
6(q9+0,2¢)=(q0,5Z)
6(q4,a,a)=(g,,aa)
(qy,0,b)=(q,,bb)
6(qq.a,b)=(gy.€)
3 (q9, b, a) =(g9, ©
6(q0,6:24)=(9:Zy)
qq € Q is the start state of machine.
Z, eI isthe initial symbol on the stack.
F ={q,} is the final state.
To accept the string :
The sequence of moves made by the PDA for the string abbbaa is shown below.
Initial ID
(g, abbbaa,Z;) - (qy, bbbaa, aZ;)
- (9o, bbaa, Z;)
= (90, baa, bZy)
52 (90, aa, bbZ;)
= (90, a, bZy)
- (90, & Zy)

|_ (QI » & ZO)
(Final Configuration)
Since g, is the final state and input stringis e in the final configuration, the string abbbaa
is accepted by the PDA.,
To reject the string :
The sequence of moves made by the PDA for the string aabbb is shown below.
Initial ID
(g, aabbb, Z,) - (qy, abbb, aZ,)
I- (QO’ bbbs aazo)

I (g0, bb, aZy)

6.14 FORMAL LANGUAGES AND AUTOMATA THEORY

:— (qO: b’ ZO)
I~ (90, & bZo)
(Final Configuration)

Since the transition &(g,,) is notdefined, the string aabbb is rejected by the PDA.

Note : To accept the language by an empty stack, the final state is irrelevant, the next input
symbol to be scanned should be e , and stack should to be empty. Even Z, should not be then

on the stack. So, the PDA to accept equal number of a's and b's using an empty stack, change
onlythe last transition in example 3. The last transition

g0, & Zp) = (41:2))
can be changed as

5 (o> & Zy) = (q1,9)
So, the PDA to accept the language L = {w|n,(w) =n, (w) } by an empty stack is given by
M=(0, £, T, 6, q9: 2y, €
where 0= {g, ¢}; Z={a, b}; T={a b Z)
& -isshown below & (g5, a, Zy) = (g0, aZy)
8 (qys b, 2Zy) = (90, bZy)
5 (4o, @,a) = (g, aa)
8 (g b, b) = (qo, bb)
5(q0, a,b) = (40.9)
5(qq> b,a) = (g0,
8 (90, & Zp) = (9159
g, € Q is the start state of machine.
Z, eT isthe initial symbol on the stack.
F ={¢}.
Note that PDA is accepted by an empty stack.
The sequence of moves made by the PDA for the string aabbab by an empty stack is
shown below.
Initial ID
(go, aabbab, Zy) |- (qq, abbab, aZ;)
(g0, bbab, aaZy)
t~ (g0, bab, aZy)

PUSHDOWN AUTOMATA 6.15

i_ (qO] ab’ ZO)
= (g0s b aZy)

%— (qO » § ZO)

F (@& 9

(Final Configuration)
Since the next input symbol to be scanned is and the stack is empty, the string aabbab is

accepted by an empty stack.
Note : g, isnot the final state. Stack is empty .

Example 4 : Obtain a PDA to accept a string of balanced parentheses. The parentheses
to be consideredare (,) , [,].
Solution :

Note1 : Some of the valid stringsare : [() () ([1)1, < [1[1 O
and invalid stringare: [) ()[1,) (. [)

Note 2 : e (null string) is valid
Note 3 : Left parentheses can either be '('or'[' and right parentheses can eitherbe')'or']'.

Step 1 : Let g, be the start state and Z, be the initial symbol on the stack. The state g, itself
is the final state accepting < (anempty string).

Step 2 : Inthe state g, , if the first scanned parentheses is (' or '[', push the scanned symbol on
to the stack and change the state to g, . The transition defined for this can be of the form
6(q0,(:Zy) = (qh(zo)

5(‘]0![,20) - (QI’ [ZO)
Step 3 : If at least one parentheses either '(' or '[' is present on the stack and if the scanned
symbol is left parentheses, then push the left parentheses on to the stack. The transitions defined
for this can be of the form

5(q, () = (g, (()
6(q,G0) = (g.(D)
(gL = (g, [0)
8(q,L1) = (@ 10)

6.16 FORMAL LANGUAGES AND AUTOMATA THEORY

Step 4 : If the scanned symbol is ') ' and if the top of the stack is (" pop an element from the
stack. Similarly, if the scanned symbol is'] ' and if the top of the stack is' [pop an element from
the stack. The transitions defined for this can be of the form

), () = 9
5(41’]) = (qls €)
Step 5 : When top of the stack is Z,, it indicates that so far all the parentheses have been

matched. At this point, on e - transition, the PDA enters into state g, and all the steps from
step] are repeated . The transition for this can be of the form

gy, €, Zy) = (90, &)
So, the PDA to accept the language consisting of balanced parentheses is given by
M =(Q,2,r,5,qO,zo’F)

Where Q={q0’ql}; 2={(’)’[a]}; r={(,[,20}
§ :is shown below .

(g0, (, Zy) = (g1, (Zp)
(o, [+ Zy) = (g1, [Zp)
3(q, (L) = (. (O)
(g, ([) =g, (D)
3(gq, [.() =(q. [O)
(g, [.[) =g (D)
d(q,,).()=(q,.€)
3(g,.L0) =(q,.€)
5(q,,6.2,)=(g0-Z0)
g, € Q is the start state of machine.
Z, e T istheinitial symbol on the stack.

F={qq}-
Note that even ¢ is accepted by PDA and is valid.

To accept the string :
The sequence of moves made by the PDA for the string [() () ([])]is shown below.
Initial ID
(9. OO UAD] Z) F (@ OO dDI[Z)
F (@, DOUD L [Z)

I- (ql) ()([])]’ [ZO)

PUSHDOWN AUTOMATA 6.17

= (g,)ADI UZ)
- (@, (D] [Z)
Fo(q, (D L(1Z)
Fo@s 1) 1I1Z)
= (@)1, ([Z)
= (4, b [Zp)

= gy & Zp)

= (90, & Zp)
(Final Configuration)

Since the next input symbol to be scanned is eand the stack is empty, the string [() () ([])]is
accepted by the PDA.

Example 5 : Obtain a PDA to accept the language L ={ wiw € (a, b)*and n,(w) >ny(w) } .
solution :

Note : The solution is similar to that of the problem discussed in example 3 in which we are
accepting strings of a's and b's of equal numbers. When we encounter end of the inputi. e., e

and top of the stack is Z, , it has equal number of a's and b's . But, what we want is a machine to

accept more number of a's than b's. For this, only change to be made is that when we encounter
(i e., end of the input), if top of the stack contains at least one a, then change the final state to

g, and do not alter the contents of the stack. The transition defined remains same as problem
shown in example 3, except the last transition. The last transition is of the form
3 (qp6a) =(q,a)
So, the PDA to accept the language L= {w|n,(w)>n,(w)}
is givenby M =(Q.2.T.,0,9¢,2¢,F)
where Q={qy, ¢} ; Z={a,b}; T={ab,Z)}
& : is shown below.

S (qps @ Zy) = (g9:aZy)
5(q, b Zy) = (g0.0Z)
5(q0, @ a) = (qo,a0)
(g0, b b) = (o, bb)

6.18 FORMAL LANGUAGES AND AUTOMATA THEORY

5 ((Ios a, b) = (‘]o, G)
6(q9, b,a) = (9,9
6(qp, & a) = (q,a)

go € Q is the start state of machine ; Z, e T is the initial symbol on the stack.
F = {q,}is the final state.
Note : Onsimilar lines we can find a PDA to accept the language
L={w|we(a,b)*and n,(w)< n,(w)}
i.e., strings of a's and b's where number of b's are more than number of a's . To achieve this only
change to be made in the above machine is change the final transition.

(40 & a) = (g, a)
to

(90, & b) = (g1, b)

So, the PDA to accept the language L = {wlwe(a,b) *and n,(w)< n,(w)}
is given by M =(0,2,1,8,94,2,,F)
where O={qy,q}; Z={ab}; T={abZ};
& : is shown below .
0o a, Zy) = (40 aZy)
5(qo, by Zy) = (g0, bZp)
3 (g0, @, @) = (4o, aa)

é (‘]o» b, b) = (40» bb)
8(q9-a, b) = (0.9
5 (qo: b1 a) = (‘30, G)

6(q0, 6 b)) = (q,b)
g0 € O isthe start state of machine ; Z, e T' is the initial symbol on the stack
F ={q,} isthe final state.

Example 6 : Obtain a PDA to accept the language L = {a"b*"|n >1}.
solution :

The machine should accept n number of 2's followed by 2n number of b's.

PUSHDOWN AUTOMATA 6.19

General Procedure :

Since n number of a's should be followed by 2n number of b's, for each a in the input, push
twoa's on to the stack. Once we encounter b's, we should see that for each b in the input, there
should be corresponding a on the stack. When the input pointer reaches the end of the string, the
stack should be empty. If stack is empty, it indicates that the string scanned has n number of a's
followed by 2n number of b's .

Step 1:Let ¢, be the start state and 7, be the initial symbol on the stack. For each scanned
input symbol a, push two a's on to the stack. The transitions defined for this can be of the form
6 (o, a, Zy) = (g0, aaZy)
0(q0, a, @) = (qy, aaa)
Step 2 : In state g, , if the next input symbol to be scanned is b and if the top of the stack is a,
change the state to g, and delete one b from the stack. The transition for this can be of the form
0(qo, b, a) = (g, ©
Step 3 : Once the machine is in state ¢, , the rest of the symbols to be scanned will be only b's
and for each b there should be corresponding symbol a on the stack. So, as the scanned input
symbol is b and if there is a matching a on the stack, remain in g, and delete the corresponding
a from the stack. The transitions defined for this can be of the form

é(q, b, a) = (q, €
Step 4 : Instate g, ,ifthe next input symbol to be scanned is ¢ and ifthe top of the stack is Z;,
(it means that for each b in the input there exists corresponding a on the stack) change the state
to g, whichis an accepting state. The transition defined for this can be of the form
d(qy, & %) = (42, ©
So, the PDA to accept the language L={a"h*" |n 21}
isgivenby M =(Q0.2.I',6.9¢,Z,.F)
where 0= {qp. g, @2} L={a,b}; TI={a Z}
& : is shown below.
0 (905 a, Zp) = (qy, aaZy)
6 (4o, a,a) = (4o, aaa)
6 (g0, bya) = (g1, €
d(q, b,a) = (g, 9
d(q, &7 = (g2, ©
q, € Q isthe start state of machine ; Z; e I is the initial symbol on the stack.
F ={q,} isthefinal state.

6.20 FORMAL LANGUAGES AND AUTOMATATHEORY

To accept the string :
The sequence of moves made by the PDA for the string aabbbb is shown below.
Initial ID
(qq, aabbbb, Z;) = {qy, abbbb, aaZ,)
= (qy, bbbb, aaaaZ)
|- (g, bbb, aaaZ,)
= (q,, bb, aaZ,)
o (g b, aZy)
- (q1s & Zp)
= (92, & Zp)
(Final Configuration)
Since g, is the final state and input string is < in the final configuration, the string aabbbb
isaccepted by the PDA.

To reject the string :
The sequence of moves made by the PDA for the string aabbb is shown below.
Initial ID
(qo, aabbb, Z;) = (g0, abbb, aaZy)
I~ (qo, bbb, aaaaZ,)
F (g0, bb, aaaZy)
= (g0, b, aaZy)
I— (‘70, € aZo)
(Final Configuration)
Since the transition &(g,, a) is not defined, the string aabbb isrejected by the PDA.

Example 7 : Obtain a PDA to accept the language L ={ ww® | w e (a+b)*} .
solution :

[tis clear from the language I(M)={ ww"} thatif w=abb
then reverse of w denoted by ,,® willbe & _ ppq
and the language L will be ,,,,% i.e., abbbba which is a string of palindrome.

So, we have to construct a PDA which accepts a palindrome consisting of a's and b's. This
problem is similar to the problem discussed in example 1. Only difference is that in example 1, an
extra symbol C acts as a pointer to the middle string. But , here there is no way to find the mid
point for the string.

PUSHDOWN AUTOMATA 6. 21

General Procedure :

To check for the palindrome, let us push all scanned symbols onto the stack till we encounter
the mid point (Remember that there is no way to find the midpoint). Once we pass the middle
string, to be a palindrome, for each scanned input symbol , there should be a corresponding
symbol (same as input symbol) on the stack. Finally, if there is no input and stack is empty,
we say that the given string is a palindrome.

Step 1 : Let g, be the initial state and Z, be the initial symbol on the stack. In state g, and
when top of the stack is Z,, whether the input symbol isa or b push it on to the stack, and remain
in g, . The transitions defined for this can be of the form

(qo, a,2Zy) =(qp, aZy)

8(qo. b. Zg) =(q0, bZ,)

Once the first scanned input symbol is pushed on to the stack, the stack may contain either
aorb. Now, in state g, , the input symbol can be either a or b. Note that irrespective of what is
the input or what is there on the stack, we have to keep pushing all the symbols on to the stack,
till we encounter midpoint (But, there is no way to find mid point. We continue this process till
we encounter mid point through our common sense).

So, the transitions defined for this can be of the form

8(ge, @,a) = (4o, aa)
o(qo, bya) =1(qo, ba)
d(qp, a.b) =(qy, ab)
o(qo, b,b) = (gq, bb)
Step 2 : Now, once we reach the midpoint, the top of the stack may be a or b. Tobe a

palindrome, for each input symbol there should be a corresponding symbol (same as input
symbol) on the stack. So, whenever the input symbol is same as symbol on the stack, change the

state to g, and delete that symbol from the stack. The transitions defined for this can be of the
form 5(qp, @, @) =(q1, 9

(g0, 0,0) =(q1,9
Step 3 : Now, once we are in state g, , it means that we have passed the mid point. Now, the
top of the stack may be a or b. To be a palindrome, for each input symbol there should be a
corresponding symbol (same as input symbol) on the stack. So, whenever the input symbol is
same as symbol on the stack, remain in state ¢, and delete that symbol from the stack. The
transitions defined for this can be of the form

(g, a,a) =g, ©)

gy, b,6) =(q1,©

6.22 | FORMAL LANGUAGES AND AUTOMATATHEORY

Step 4 : Finally, in state 41, if the string is a palindrome, there is no input symbol to be scanned
and the stack should be empty i. e., the stack should contain Z;. Now, change the state to g,
and do not alter the contents of the stack. The transition for this can be of the form
a.e2y) =(92.2)
So, the PDA M to accept the language ~ L(M) ={ ww" | w (a, b) *}
is given by M =(Q,2,I',6,9¢,Z,, F)
where O=1{qgp, 91, 92 }3 T={a,b}; T={abZ}
5:isshownbelow. &(qp, a Zp) = (qp, aZ;)

8 (g0, by Zg) = (40, bZy)
8 (qy, a, a) = (qy, aa)

8 (g0, b, @) = (o, ba)

J (g0, @ b) = (4o, ab)
8 (g0, b, B) = (qo. bb)
5(gq.a,a)=(q,,€)
8(q0, b, B) = (q1, ©
5(g, a.a) = (41, 9
5(g1: b,) = (a1, ©

3(q & Zy) = (92, %)
go € Q isthe start state of machine ; Z, T is the initial symbol on the stack.
F = {gq,} isthe final state.

Note that the transitions numbered 3 and 7, 6 and 8 can be combined and the transitions
can be written as shown below also .

8(qe,a, Zy) = (9o, aZp)

5(qos b Zy) = (qo, bZy)

5(gp,a, @) = { (g0, aa), (g1, e}
5(qp:b,a) = (g, ba)

5(qp,a, b) = (4o, ab)

6(qp, b 8) = | (g0, bB), (g1, © }
S(gpa,a) = (4,9

8(q,b,0) = (g,,9

d(g.e Z) = (92:2p)

PUSHDOWN AUTOMATA 6.23

Note that once the following transitions are applied
5(?0,0’0) = {(ql)vaa)v(QI’e)}

5(q0.b, 8) = { (q0,bb), (g1, ©}
if the input symbol is same as the symbol on top of the stack, the machine may push the
current symbol on to the stack, or it may pop an element from the stack. At this point, the
machine makes appropriate decision so that if the string is a palindrome, it has to accept . This
machine is clearly a non - deterministic PDA (inshort we call NPDA).
To accept the string :

The sequence of moves made by the PDA for the string aabbaa is shown below.
Initial ID
(g, aabbaa, Z,) |- (gq. abbaa, aZy)
|- (g0, bbaa, aaZ,)
(9o, baa, baaZ;)
PDA now pops an aa, aaZy)
element instead of a, aZ,)
pushing
F @& Z)
F @8 %)
(Final Configuration)
Since g, is the final state and input string is ¢ in the final configuration, the string aabbaa
isaccepted by the PDA.

Example 8 : Construct a PDA which accepts the set of strings over {a, b} with equal
number of a's and b's such that all a's and b's are consecutive.

Solution :

We construct PDA M, which accepts given language by

(a) Empty store, and

(b) Final state
(a) By empty Store :

Let M = ({g,}»{a,b},{a,b, Zy}, 8,94, Z #) . We know that the given language contains all
the words over {a, b} that have equal number of consecutive a's and b's. So, the given language
L={a"b":n20}u {b"a": n20} . ,

We use stack either to hold @'s to match with b's or b's to match with a's.

6.24 FORMAL LANGUAGES AND AUTOMATATHEORY

Transition function § is defined as follows :

8(q0,a,2Z0) = {(g9,aZ,)}, (To store first a on the stack)
6(qy,a,a)={(gy,aa)}, (To store remaining a's on the stack)
8(q0.5,2) = {(40,0Z)}, (To store first b on the stack)
6(qo,b,0) ={(q4,0b)}, (To store remaining b's on the stack)
6(gy.b,a)={(g0-5)}> (To match input b with a on the stack in case of
L= {@ab":n=0}
8(gq,a,b) = {(gy:€)}, (To match input a with b on the stack in case of
L={"a" :nz0})

8(q0.5.Z4)={(q0€)} (To make the stack empty)

(b) By final State : Let M =({q..q,},{a,0},{a,0,Z,}.6.90.Z,:44,})
8(q4,a,Z,y) ={(90-9Z,)}, (To store first a on the stack)
8(qy.a,a) = {(gy,aa)}, (To store remaining a's on the stack)
8(qpsb,2Z4) = {(q0,bZ,)}, (To store first b on the stack)
8(qg,b,b) = {(q,,5b)}, (To store remaining b's on the stack)
8(qy,b.a) = {(g.)}, (To match input b with a on the stack)
8(qy,a,b) = {(40,5)}» (To match input a with b on the stack)
0(q0€.2,) ={(q.Z)} (To reach the final state)

Example 9 : Construct a PDA, which accepts L = {a"c"b":m,n=1}.

Solution : Suppose PDA M = ({q,}.{a,b},{a,b,Z,}.5.,q4.Z,.¢) accepts L.

We have restriction imposed on the number of @'s and b's that it should be equal but not on
the number of ¢'s. So, PDA stores all a's on the stack and when ¢'s encounter, then keep the
stack unchanged and when b's encounters then matches with a's stored on the stack.

§ isdefined as follows

(q0,a,Z4) ={(qq,aZ,)} (To store first @ on the stack)

8(gg,a,a) ={(qy,aa)}, (To store remaining a's on the stack)

8(go5¢,a) = {(g9,a)}, (To read all ¢'s on the input tape and keep stack
contents unchanged),

8(q0,b.a) = {(g0:€)} » (To match input b with a on the stack)

5(q0 € 920) = {(qO’e)} (TO emptythStaCk)

PUSHDOWN AUTOMATA 6.25

Example 10 : Construct a PDA M, which accepts L = {a"b"c"d":m n= 1}
Solution :

We construct M by using the grammar of given language L. But, if we see the format of language
L. then it is clear that each word of language L contains number of @’s in the starting which is
equal to the number of d's at the end. In the middle the number of b's is followed by an equal
number of ¢’s. So, all the starting a's and following b's are loaded on to the stack. Now, stack will
contain b's at the top and @'s at the bottom (LIFO) and on the input tape .=z~ remains. After this
PDA M matches the number of ¢'s with b's and d's with @'s. This is shown in the below figure.

LetPDA M = ({¢,,9,}.{a.b}.4a.b.Z,}.6,9,,Z,.{9,}), and § isdefined as follows

6(90,a,Z4) = {(g9.aZ,)} (To store first a on the stack),
8(gq,a,0) = {(gq,aa)} (To store remaining a's on the stack),
8(qy,b,a) = {(qq,ba)} (To store first b on the stack and keeping stack
contents unchanged),
8(qq,b.b) = {(g4,bb)} (To store remaining b's on the stack),
8(qg,c,0) = {(95.€)} (To match ¢'s on the tape with b's on the stack),
6(qq.d,a)={(q0.5)} (To match d's on the tape with a's on the stack), and
8(gp.6.20)=1(q,:Zo)} (To reach the final state)
Input tape Stack

ISaa... abb... bee...cdd...d## ...
4
i
$aa...abb... bec...cdd..,d# & ...
'Y

ﬂ i

Saa...abb... bec... cdd... d# ¥ ...
a
T A

6.26

FORMAL LANGUAGES AND AUTOMATA THEORY

Example 11: Let M = ({ p,q}.{0,1},{Z,.X}, 6,p.Z,.¢) beaPDAwhere § is given by

following transitions.
d(p).Zy) ={(p.XZ)},
3(pe.Zy)={pe).
s(p1,.X)={(p.XX)},
3(q.1,X)={(q.€)} .
o(p,0,X)=1{(g,X)},and

5(‘?!0,20) = {(Pszo)}
(a) What is the language accepted by this PDA by empty store ?
(b) Describe informally the working of the PDA.

Solution :

SN Lh b B B g

Let R:6(p).Zo)={(P, XZ o)} »

R, 3(pe,Zo)={(Pe)»

Ry:5(p),X) = (P XX)}

R,$¥(g.1,X)=1{(q.)} »

Rs:6(p,0,X)={(q.X)} ,and

Rg:6(q,0,Z¢)={(p,Z)}

From the given transitions, we analyze the following things.

Using R, terminal 1 is stored as X on the stack in the state p .

Using R, , with no input PDA makes the stack empty in the state p .

Using R, ,remaining 1's are stored as X's on the stack in the state p .

Using R, , input 1's are matched with X's stored on the stack in state g.

Using R, , PDA reads 0 and moves to the state ¢ while maintaining X on the stack.

Using R,, PDA reads 0 on the tape and moves to the state p while maintaining
Z, on the stack.

So, PDA reads 1's on the tape and loads these on to stack as X's (R, and R;) . When O is

read in state p then moves to the state g(R,) . Inthe state ¢ . 1's on the tape are matched with
X'sonthestack (R,) and when 0 is read on the tape then PDA changes its stateto p(R;) .In

the

state p ifno input is remaining on the tape and Z, is on the stack then PDA makes the stack

empty (&;) .

So, the accepted language L = {1"01"0:n 2 0} .

PUSHDOWN AUTOMATA 6.27

Example 12 : Let Q = ({4, ¢,}.{a,b}.{a,b,Z}, .9,.Z.4) bea PDA accepting by empty
stack for the language which is the set of all nonempty even palindromes over the
set {a, b} . Below is an incomplete specification of the transition §. Complete the

specification. The top of the stack is assumed to be at the right end of the string
representing stack contents.

- 0(q9.a.2) ={(qq,2a)}

» 0(g9,0,Z) = {(q0.2b)}

o O (G 0BiB) Sineennionsis

- 6(qo,b,b) =......... ;

. 6(gy,a,a)={(q,.€)}
6(q,,b,b)={(q,€)} and
- 0(q,.2) ={(q,€)}

N o oA 8N =

Solution :
Let the set of even palindromes over {a, b} is L, then
L = {& aa, bb, abba, baba, aaaa, bbbb, . ..}

If we find the mid of a palindrome then left is the mirror image of right and right is the mirror image
of the left. So, deciding the mid point is the problem here. We design a DPDA for given set.

In the given example either terminal symbol is stored on the stack to be matched later on
after the mid point or if the corresponding match is there then PDA popped the stack symbol.

In the given transitions using (1) and (2) PDA loads a or b symbol on the stack, using (5)
and (6) PDA matches the input with stack symbol and using (7) PDA makes the stack empty.
So,ifmorea or b symbols are there then PDA will use (3) and (4) and in these either symbol will

be loaded on the stack and remain in the state g, or matched with the same symbol and moved
to state g, .

So, (3) and (4) solve the non-determinism problem to select the mid point into the palindromes.
So, transitions are given below.

3(q9,9,2) ={(qq,2a)},
6(q0,0,2) ={(q0,2b)}
6(qq,a,a) ={(q9,aa)(4,.€)}
9(q0,b,0) ={(4,,b0),(q1.,€)}
6(qy.a,a)=1{(q,)}
0(qy.b,b) = {(g,.€)} and
5(ay2.2) = {(a12)}

= Oy th il B ges

6.28 FORMAL LANGUAGES AND AUTOMATATHEQRY

6.3 DETERMINISTIC AND NONDETERMINISTIC PUSHDOWN AUTOMATA

In this section, we will discuss about the deterministic and nondeterministic behavior of pushdown
automata.

6.3.1 Nondeterministic PDA (NPDA)

Like NFA, nondeterministic PDA (NPDA) has finite number of choices for its inputs. As we
have discussed in the mathematical description that transition function § whichmaps from
0 x (T v {e}) x T to (finite subset of) O x I' *. Anondeterministic PDA accepts an input if
a sequence of choices leads to some final state or causes PDA to empty its stack. Since, sometimes
it has more than one choice to move further on a particular input ; it means, PDA guesses the
right choice always, otherwise it will fail and will be in hang state.

Example : consider a nondeterministic PDA M = ({g,}.{a,b}.{a,b,Z},6.9,,Z), for the
language I = {a"b" : n = 1} ,where § is defined as follows:
(4o, Z) = {(gq»ab),(qq,aZb)} (Two possiblemoves forinput e onthetape and Zon the stack),

8 (4y,a,a) ={(g,,€)} » and & (gy,b,b) ={(g¢,€)}
Check whether string w = gabb is accepted ornot ?

Solution : Initial configuration is (g,,aabb,Z) . Following moves are possible :

> (g,,aabb,ab) ~—» (go,abb,b) ——» 4)
(gq,aabb,Z)—

L—+(qy,aabb,aZb) ~—» (q,,abb,Zb)

1

(QO’abbsabb) (QQ,abb,abe)
(9o, bb,bb) (4o,bb, Zbb)
(q09b, b)

(g, bb,abbb) (qq,bb,aZbbb)

(90,€,€)

¢ ¢
Hence, w = aabbis accepted by empty stack.

PUSHDOWN AUTOMATA 6.29

One thing is noticeable here that only one move sequence leads to empty store and other don't.

In other words, we say that some move sequence(s) leads to accepting configuration and other
lead to hang state.

6.3.2 Deterministic PDA (DPDA)

Deterministic PDA (DPDA) is just like DFA, which has at most one choice to move for certain
input. APDA M =(Q,%,1,7,q,,Z,, F) isdeterministic if it satisfies both the conditions given
as follows :

1. Foranyg e Q,ae(Tv {e})',and Z T, 8 (g, a, Z) has at most one choice of move.
2. Forany ge Q,and 7 e, if 8(g,¢, Z) is defined i.e. 8(q,¢, Z) # ¢, then

5(g.a,Z)=dforall g e 3
Example : Consider a DPDA M = ({g,,9,}.{a.c}.{a,Z;},8.q94,Z,.4) accepting the
language {a"ca” :n > 1}, where § is defined as follows :

6(q0,a,2y) ={(qy,aZ,)}
6(qq.a,a) ={(gq,aa)},
J(qo,c,a) =~ {(qlsa)}!
J(Q]’ava) - {(qlae)}’ and 5(‘]]’6720) = {(ql’e)}
Check whether the string w = aacaa is accepted by empty stack or not ?
Solution :
We see that in each transition DPDA has at most one move. Initial configuration is
(go,aacaa, Z,) . Following are the possible moves.

(qo,aacaa ,Zy) —>(qy,acaa,aZy) —» (qq,caa,aaZ) = (q,,aa,aaZ)

{

(QDESE) « (th,ZO) 27 (QI’asazo)
Hence, the string w = aacaa is accepted by empty stack.

As we have discussed in earlier chapters that DFA and NFA are equivalent with respect to
the language acceptance, but the same is not true for the PDA.

For example, language I ={ww *:w € (a U b) *} isaccepted by nondeterministic PDA,
cannot by any deterministic PDA. A nondeterministic PDA can not be converted into equivalent
deterministic PDA, but all DCFLs which are accepted by DPDA, are also accepted by NPDA.

So, we say that deterministic PDA is a proper subset of nondeterministic PDA. Hence, the
power of nondeterministic PDA is more as compared to deterministic PDA.

6.30 FORMAL LANGUAGES AND AUTOMATA THEORY

Procedure to find whether PDA is deterministic or not

Let M =(0,2,I',6,9,,Z,,F) beaPDA. The PDA is deterministic if
1. &(g, a, Z) hasonlyone element.
2. If 5(g, & Z) isnotempty, then d(g, a, Z) should be empty.

Both the conditions should be satisfied for the PDA to be deterministic. If one of the conditions
fails, the PDA is non - deterministic.

Example 1 : Is the PDA to accept the language L(M) = {w Cw® | w e(a+b)* }is

deterministic or not ?
Solution :
The transitions defined for this machine are
(g0, a, Zy) = (go. 4Zy)
(g, by, Zy) = (qo, bZy)
d(qy, a, a) = (qo, aa)
6(qo, b, a) = (qo, ba)

o(qp, @, b) = (qo, ab)
6(q0, b, B) = (g0, bb)
0(9¢.C.Z¢) =(q15Z¢)
6(q,,C,a)=(q,,a)
0(q0,C,b)=(q:,b)
g a,a) = (g, ©
o(qy: b,0) = (q1> ©)
Mg, 6Zy) = (4 4y)

The PDA should satisfy the two conditions shown in the procedure to be deterministic.

1. (g, a, Z) hasonly oneclement : Note that in the transitions, foreach ¢ € 0, a € £ and Ze T,
there is only one component defined and the first condition is satisfied.

2. 'The second condition states that if (g, €, Z) is notempty, then &(g, a, Z) should be empty
i.e., ifthereisan - transition, (inthiscaseitis & (¢, & Z;)), then there should not be
any transition from the state g, when top of the stack is Z, which is true.

Since, the PDA satisfies both the conditions, the PDA is deterministic.

PUSHDOWN AUTOMATA 6.31

Example 2 : Is the PDA corresponding to the language L={a"b"|n>1} byafinal stateis
deterministic or not ?

Solution :

The transitions defined for this machine are
(g0, @, Zy) = (g, aZyp)
(g0, a, a) = (gp, aa)
(g0, b, @) = (g1, @
d(g, b, o) = (. ©
(g & Z)) = (g2, ©

The first condition to be deterministic is 8(q, a, Z) should have only one component. In this
case, foreach g € 0, a e Tand 7 eT , there exists only one definition. So, the first condition is
satisfied.

To satisfy the second condition, consider the transition
3(q,, & Z,) =(g,, ©
Since the transition is defined, the transition 3(g,, a, Z,) where a € = should not be defined
which is true. Since both the conditions are satisfied, the given PDA is deterministic.

Example 3 : Isthe PDAto accept the language L(M) = {w|w € (a+b)* and n,(w) =ny(w) is
deterministic or not ?
Solution : The transitions defined for this machine are

8(qq.a, Zp) = (90> aZy)

8(qe,b Zy) = (q0:bZp)

8(qy,a, @) = (4o, aa)

8(go.b, B) = (g bb)

8(qq,a, b) = (g0, ©)

8(gpsb, @) = (g0, €)

8qp.s Zy) = (9 %)
The first condition to be deterministic is 8(g, a, Z) should have only one component. In this
case, foreach ¢ €0, a € £ and 7 <1, there exists only one component. So, the first condition is

satisfied.
To satisfy the second condition, consider the transition

8qq. & Zy) = (g1, Zo)

6.32 FORMAL LANGUAGES AND AUTOMATATHEORY

Since this transition is defined, the transition 8(qq, a, Z,) where a € should not be defined .
But, there are two transitions

8(qo, a, Zg) = (qo, aZy)
gy, b, Zy) = (qy, bZy)

defined from g, when top of the stack is Z,. Since the second condition is not satisfied, the given
PDA is non - deterministic PDA.

Example 4 : Give adeterministic PDA for the language L = {g"cbh®" :n =1} over
the alphabet X = {a, b, ¢} . Specify the acceptance state.
Solution :
LetDPDA M = ({9,,95-4,} (@, b, ¢}, {a, Zp}, 8,945 Zy, {q }) acceptsthegivenlanguage L.

We analyze that in the given L, in each word, double of number of d's at the starting is equal to the
number of #'s at the end and no restriction apposed on the ¢ in relation with the number of @'s or
b's. So, one a is read on the tape and stored as aa on the stack and when b's encounted then
matched with a's on the stack.

Instate g, all a's are read and stored on the stack and when ¢ is read then DPDA moves in
the state g, and inthe state g, , b's areread on the tape and matched with a's on the stack. When
no symbol is on the tape then DPDA moves to the final state ¢, .

The transition function § is defined as follows:

3 (g, a, Zy) = {(q,,aaZ,)} (To store the first a as aa on the stack),

8 (g,,a.a) ={(q,,aaa)} (To store the remaining a's as double on the stack),
8 (q,. ¢, a) = {(g;.a)} (To read c and move to state g,),

8 (g, b, @) = {(g;, O} (To match the b's and a's stored on the stack), and
3 (9 & 2Zy) = {(97>2)} (To reach the final state)

The acceptance state is ¢, and DPDA Mis shown inbelow figure.

a, Zo, aaZo b, a, €

¢, a,a

©

a, a,aaa

FIGURE : PDA accepting {a"ch™ :n =1}

PUSHDOWN AUTOMATA 6.33

6.4 ACCEPTANCE OF LANGUAGE BY PDA
The language can be accepted by a Push Down Automata using two approaches.

1. Acceptance by Final State : The PDA accepts its input by consuming it and then it enters
in the final state.

2. Acceptance by empty stack : On reading the input string from initial configuration for
some PDA, the stack of PDA gets empty.

6.4.1 Equivalence of Empty Store and Final state acceptance

Theorem:
If M, =(0,,2,1,5,,p,.Z,,4) is a PDA accepting CFL L by empty store then there
existsPDA M, =(0,,%.1',,8,, p5,Z,,{q,}) whichaccepts L by final state.

Proof :
First we construct PDA M, based on PDA M, and then we prove that both accept L.

Step 1 : Construction of PDA), based on given PDA M,

x issame for both PDAs. We add a new initial state and a new final state with given PDA 1, .

So, 0, =01 V{p,Ygq,}

The stack alphabet T', of PDA s, contains one additional symbol Z, with T, .

So, I, =T, U {Z,}
The transition function &, containsall the transitions of given PDA. 41, and two additional transitions
(R and Ry) asdefined as follows:

Ry :6,(p3.6,Z3)={(p1,2,2,)},

R, :0,(q,a,Z)=06,(q,a,Z) forall (¢,a,Z) in 0, x (£ U {e}) x T

(the original transitions of A1,),and
Ry:6,(9,€,Z,)={(g,,€)} forall g € O,

Bythe Ry, », moves fromitsinitial ID (p,,e, Z,) totheinitial ID of u, By R,, », usesall the
transitions of 4, after reaching the initial ID of », and by using Ry A, reaches the final state ¢ 1.

6.34 FORMAL LANGUAGES AND AUTOMATA THEORY

The block diagram is shown in below figure.

€,2,,2,2, €,Z,,a
—@zenf,, | e @

FIGURE : Block diagram of PDA 1,

A

Step 2 : The language accepted by PDA M, and PDA M,

The behaviors of M, and M, are same except the two by ¢ -movesdefinedby Ry and Rj.
Let string w ¢ L and accepted by M, ,then

(Ppwsz1)|‘r,;l‘(%€»€) where q € Q] (R%ult])
For M,,theinitial IDis (p,,w,Z,) and it can be written as (p,,ewe2,). So,

(P2r€we:Zy) iz (P1sw,Z,2,) (This nitial D of M)
IM;x (q’e922) (b)' R2 and Result l)

l—é:—(qfreva) aEF; (By R3)

Thus, if M, accepts w, then M,also acceptsit.
Itmeans L(M,)c L(M,) (Result 2)
Letstring w e L and accepted by PDA M, , then

(pewe ;) i (Pw2,Z,) By Ry) (Result 3)

o 9.6.2,) By Ry) (Result 4)

5 (qIQG:!a) ael, (ByR3)
Note : The Result 3 is the initial ID of A, . The Result 4 shows the empty store for M, if
symbol Z, is not there.

PUSHDOWN AUTOMATA 6.35

For M,,theinitial IDis (p,, w,2Z,)
So, (PysW.Z,) |3, (4,€,€) ,where ¢ € 0, (ByResult3 and Result 4) Thus, if M, accepts
w, then M, also accepts it.

It means, L(M,) < L(M,) (Result 5)

Therefore, = L(M,) = L(M,) (FromResult2 and Result 5)
Hence, the statement of theorem is proved.

Example: Consider a nondeterministic PDA M, = ({g,}, {a,b}, {a,b,S}, 8,q,,5,¢) which

accepts the language 1 = {a"p" : n =1} by empty store, where § is defined as follows :
6(q9,€,8) = {(g,,ab), (g,,aSh)} (Two possible moves),
8(g0,a,0) ={(g9,€)}, and §(g,,b,b) = {(gq,€)}
Construct an equivalent PDA M, which accepts Z in final state and check whether string
w = aabb is accepted or not ?

Solution : Following moves are carried out by PDA M, inorderto accept w = qabb :

(g9, aabb,S)|— (q,,aabb,aSh)
—(q,,abb, Sb)
—(q,,abb,abb)
—(q,.bb,bb)

—(qoabsb)

= (qo ,G,G)

Hence, (4o,aabb,S) |- (40.€,€)
Therefore, v = aabb isaccepted by M,.

6. 36 FORMAL LANGUAGES AND AUTOMATA THEORY

Construction of PDA 1, based on given PDA M,
LetPDA M, =(Q,,Z,1,,05, P2, Z,,{q,}) , where
0, = {q’Qf’Pz} 3 Z = {a, b}
T, = {a,b,S,Z,},and transition function &, is defined as follows :

0,(py,€,2,)=1{(4,52,)} (Using Ry)
5,5(g,€,5) ={(g,ab),(g,aSh)} (Using Ry)
3,(g,a,a) = {(q,€)} (Using Ry)
6,(q,b,b)={(g,€)} (Using R;)
6,(9.€,2,)=1{(q, €)} (Using R;)

Following moves are carried outby PDA M, in order to accept w = aabb *

(p,,aabb.Z,)|—(g,aabb,SZ,)
— (q,aabb,aSbhZ,)
— (g,abb,SbZ ,)
— (q.abb,abbZ,)
—(g,bb,bbZ ,)
—(g,b,bZ,)

—(q.€.Z,)

—(qjse’ ZZ)

Hence, (P, aabb, Z,) |55 (4.€,22)

PUSHDOWN AUTOMATA 6.37

The PDA M, is shown in below figure .

& §, aSh b,be

» z b Sz @ e! z La
_@ €, 24, 2 q 2 (‘If)
& S, abu :] l:a, a, €

FIGURE : PDA M, accepting {a"b" : n = 1}

6.4.2 Equivalence of Final state and Empty Store acceptance

Theorem :

If M, =(Q,, 2.1, 8,, 40, Zy, F) isaPDAaccepting CFL L by final state then there exists
PDA M, =(0,,%,T,6,,4,, Zy, ¢) Whichaccepts L by empty store.

Proof :
First we construct PDA M, based on PDA M, and then we prove that both accept L.

Step 1 : Construction of PDA M, based on given PDA M,
%, T, initial state gy, and initial symbol on the stack Z; are same for both PDAs. We add a
new state with given PDA M, . All final states of PDA. M, are converted into non-final states.
So, 0, =0,V {E} (where E is new added state)
The transition function &, contains all the transitions of given PDA M, and additional transitions
(Ry and Ry) defined as follows:
R,:8,(9,a,2)=38,(q,a,Z) forall (g,a,Z) in Q, x (£ v {€}) xT,
(the original transitions of M,),
R,:8,(p,e,@)={(E,a)} forall p e Fand a T *,and
R,:6,(E,e,a)={(E,e)} forallg er*and E € Q,
By Ry,PDA M, usesall the transitions of M, and reaches the final state if acceptability is there.
By R,, M, reaches state £ and after reaching state E, by R, erases all the stack symbols.

Ry provides a loop incase of stack is not empty . The block diagram is shown in
below figure.

6.38 FORMAL LANGUAGES AND AUTOMATA THEORY

=

€, 0,c
—— PDA M,

FIGURE : Block diagram of PDA M,
Step 2 : The language accepted by PDA A1, and PDA M,
The behaviors of PDA M, and PDA M, are the same except the two ¢ -moves defined in
R, and R;.
Letstring v ¢ L and accepted by PDA M, ,then
(@0:%,Z0) |- (4, €,@) ,where gy € Fand g e [(Result 1)
For PDA M, ,the initial ID is (gq, w, Zp) -

So, (qo,w,Zo)lx;T(qf,e,a),wherc g;€0,andael * (By R andResult1)

';(.T (E,E,a) (By R2)
IT;T (E.e,€) By RB;)
Thus,if M, accepts w, then M, also acceptsit.
Itmeans, L(M,)c L(M;) (Result 2)

Letstring w ¢ L andaccepted by M, ,then
For PDA M, , the initial ID is (gq. w, Z) . So

(q9.w.2Zy) |7}; (gs.€,a) forsome g, € Q, and o e T'* (Result3)

T;_"(E9e’a) (By R2)
- (Boe00) By R;)
For M,,the initial ID is (qo, w, Zo).
So,(qo,w,Zo)IM% (¢, €.@) ,where g, € 0, and o e I'* (By Result 3)
Thus, if M, accepts w, then M, also acceptsit.

PUSHDOWN AUTOMATA 6.39

Itmeans L(M,)c L(M,) (Result 4)

Therefore, L = L(M,)=L(M,) (From Result2 and Result 4)
Hence, the statement of theorem is proved.
Example :

Consider aPDA M, =({0,9,» 45} {a.c}, {a,25},6,,90.Zy,{q,}), convert it into PDA M, whose

acceptance is by empty store. Check the acceptability of string w = aacaa .
The transition function s, is defined as follows :

6,(99,a,Z4) ={(gq,aZ,)}
8, (gp,a,a)={(qo,aa)},
8,(g0,¢,a) ={(q,,a)}
d,(g,a,a) ={(q,.€)}and

5! (qlseszo) — {(qz ,ZO)}
Solution :

Following moves are carried out by M, in orderto check acceptability of string w = aacaa

(gy,aacaa Z) |—(q,,acaa,aZ,)
— (qy,caa,aaZ,)
—(gy,0a,aaZ,)
—(¢,a,aZ,)

—(g,,€,2Z,)

—(9,,€,2Z,)

Hence, (%aaacaazo)l,':i, (9:,€.7,)

Therefore, PDA M, accepts the string aacaa .

The transition function &, for M, isdefinedas follows :
0, (40,9, Zy) = {(g0,aZ,)} (Using Ry),
9(4o,a,a) = {(qy,aa)} (Using R,),
3, (go5¢:a) = {(q1,a)} (Using R,),

6.40

FORMAL LANGUAGES AND AUTOMATATHEORY

3,(q1,a,0) = {(4,,€)}
9,(g1:6,Z0) = (92,44)}
3,(9,,€,a)={(£.a)}
31(q2:€,¢) ={(E,c)}
6,(92.6,20) ={(E,Z,)}
8,(E,c,a)={(E,e)}
3, (E,&,¢)={(E,€)}
3, (E,e,Zy) ={(E,€)}

(Using Ry)
(Using Ry)
(Using R;)
(Using Ry)
(Using Ry)
(Using R3)
(Using Ry), and
(Using R;)

Following moves are carried out by M, in order to check the acceptability of the string w = aacaa

(9y,aacaa, Z,)|\—(gy,acaa,az,)
— (q,,caa,aaZ;)
— (q,,aa,aaZ,)
—(g1,a,0Z,)
—(q,,€,0Z,)
—(92,€,2,)

— (E,& Zy)

— (B € E)

Hence, (9o,aacaa,Zy) |5 (E,€,€)

6.5 PUSHDOWN AUTOMATA AND CFL

6.51 PDA FROM CFG

It is quite easy to get a PDA from the context free grammar. This is possible only froma CFG
which is in GNF. So, given any grammar, first obtain the grammar in GNF and then obtain PDA.
The steps to be followed to convert a grammar to its equivalent PDA are shown below.

PUSHDOWN AUTOMATA 6.41

1. Convert the grammar into GNF

2. Let g, bethe start state and Z, is the initial symbol on the stack. Without consuming any
input, push the start symbol S onto the stack and change the state to g, . The transition for
this can be

(g0, & Zy) = (g, SZy)
3. Foreach production of the form

A ax
introduce the transition ~ &(g;, a, 4) = (q,, @)

4. Finally,instate g, , without consuming any input, change the state to 4, whichisan accepting
state. The transition for this can be of the form

q1s & Zp) =gy, Zy)

Example 1: For the grammar

S —» aABC

A - aBla

B — DbAjb

C - a Obtain the corresponding PDA
Solution :

Let g, be the start state and Z, the initial symbol on the stack.

Step 1 : Push the start symbol S onto the stack and change the state to g, . The transition for
this can be of the form

g0, & Zy) = (q1, 5Zy)
Step 2 : For each production 4 -» g introduce the transition

5(‘]1 , 4, A) =(qu“)
This can be done as shown below.

5(‘]1' b: B) o (QI' E)
é(qy, a,C) =(q), 9

Production Transition
S - aABC olg,, a,S) =(q,, ABC)
A - aB &gy, a, A) =(g), B)
A - a S(qy, a, 4) =(gy, ©)
B - bA (qy, b, B) = (g1, A)
B -
C -

6.42 FORMAL LANGUAGES AND AUTOMATATHEORY

Step 3 : Finally in state g, , without consuming any input change the state to ¢, whichisan
accepting state
i.e., 8(q1 & Zy) =gy, Z)
So, the PDA Misgivenby M = (Q,Z,1',6.9,.Z,,F)
where 0={90:91,9s} T={a,b}; T={S,4,8C 2}
5 +is shown below.
3(qos & Zy) = (a1, SZp)
&gy, a,) = (g, ABC)
5(qy, a, 4) = (45, B)
8(qy, a, 4) =(q1, 9
&gy, b, B) = (g, 4
5(qy, b, B) =(q1, 9
8(gy, a.C) =(q1, €
&(gy» & Zo) =(4y:Z0)
g, € Q is the start state of machine; Z; €T is the initial symbol on the stack.
F ={q ,} isthefinal state

Note that the terminals grammar G will be input symbols in PDA and the non - terminals will be
the stack symbols in PDA.
The derivation from the grammar is shown below

S aABC
aaBBC
aabBC
aabbC
aabba

yugyud

The string aabba is derived from the start symbol S. The same string should be accepted by PDA
also. The moves made by the PDA are shown below.

Initial ID

(qo» aabba,Z) |- (g, aabba, SZy) ByRule 1
- (q,, abba, ABCZ,) By Rule 2
I- (g, bba, BBCZ,) ByRule3

PUSHDOWN AUTOMATA 6.43

I~ (g, ba, BCZ) By Rule 6

o (4 a,CZ) ByRule6

- @ & Z) By Rule7

F @y eZy) ByRule 8
(Final Configuration)

Since g is the final state and input string is e in the final confi guration, the string aabba
is accepted by the PDA.

Example 2 : Construct PDA M equivalent to the CFG § — 0BB, B — 15|05 |0 and check
whether (10000 is in N(M) or not ?

Solution : LetPDA M = ({941.1a,6},{S,B,0,1},6.9,,5,¢) , § be defined as follows :

6(qe5,5) = {(q,,0BB)} (For the production § — 0BB).
0(qq.5,B)={(4,.15)} (For the production B — 15),
0(g0€.8) ={(4,,08)} (For the production B —» 05),
6(gy.€.B) ={(g,,0)} (For the production 3 — (),
5(96,0,0) = {(g0,€)} (For terminal 0),

8(go.11) = {(g9,2)} (For terminal 1)

For string w=010000, has following moves :

—(q,,10000 ,BB)
—(,.10000 ISB)
~(q,,0000 ,SB)

(40000 ,0BBB)

—(4,,000 .BBB)
|— (a0,000 088)

|(q0,00 ,88)

6.44 FORMAL LANGUAGES AND AUTOMATA THEORY

—(4,,00,08)
—~4,.0,8)

—q,,0,0)

—(g0.€:€)
Hence, 010000 € N(M).

6.5.2 Construction of CFG from Given PDA

As per our discussion, the CFG and PDA has a strong relationship. As we have seen in the
previous section that we can construct a PDA from given CFG.. Similarly we can obtain a CFG
from given PDA.

Theorem : If M =(Q,Z,I',6,49,,Z,,¢) isaPDAwhich accepts the language L, then there is
aCFG G =(V ,T,P,S) suchthat L(G) ¢ N(M) = L.
Proof: ¥ ={S}v {lp.Z.q):p,geQ and Ze T}, T issame forboth P includes the
following productions :
P,:S —[q4,Zy,q]) isin Pforevery g € Q
P, :[p.2,q) - aisinPforevery p,ge Q,aeT U {€},and Z e T suchthat
8(p,a,Z) = {(g,€)},and
Py i [, Z, qme1] = algy, By, 421 [92: B2, 93] - [4m> Bms Gm1 isin P forevery
p.q,€Q,ae(Tule}), and Z, B; e I',where | < i < m suchthat

8 (psa, Z) = {(q1, BiBy..By)} .
Ifm=o0,then[p, Z,q] = a
Example 1 : Consider the PDA M = ({¢,,4,},{a,b},{a.Z,}, 5.q,.Z,,#) accepting the

language . = {a"b™a" : m, n > 1}, which has the following transition function.
5(q0,a,Zy) ={(q9,aZ,)},
5 (q9,a,a) = {(q.aa)},
3 (qy,b,a) ={(g,,a)},
3 (gy:b,a) = {(g.a)},

PUSHDOWN AUTOMATA 6.45

é(gy,a,a) ={(q,,€)}, and

9(9),€:Z) ={(q1,€)}

Constructa CFG G which generates the same language,
Solution : Let CFG G=(V, T,P,S), where

V = {[‘Io, ZO! qﬂ]’[qO’ZO:qI]![qHZOi QOLIQI’ZOsQI]5IQO'0’QO]*[q()aa’ ql L[qn a, qo]’ [qlsar ql]’ S}
(NOTE : The number of states are two and stack symbols are two, then number of combination

of these in triple formis 2 « 2 x 2 = 23 _ g).
L = {a, b}, Sis the start symbol , and P consists of following production rules :

Using construction rule A :
S —[90:Z4,9,) and S —[q,,2,,4,]

For transition §(q,,4,Z,)={(gp,aZ,)} :

[90:22:90) = al40,a.901(90:Z,. 9]
(90:Z,.90] = algo, 2,191, Z4.]
[90:Z0,91]>alg4.a,9, 1905 Z0,41]
(90:Z5s 1] >alg0,a,911(91, 24, 41]

For transition §(g,,a.a) = {(g,,aa)} :

[QO’a’qo]“)a[QD’a"IO][qova"IO]
[q07a’qo] - a[qo ,a’qll[QI:a’qol
[qo-aﬂh]—>a[qasa;qo][%,a,%]
[90:a,9,]1 > a[q,a.9,1[4,,9,9,]

For transition 6 (g,,b,a)={(g,,a)} :
[QO»G:qo]“)b[QIi"’qo]
[90-2.9:1->blg,.a,q,]

For transition & (q,,b,a)={(g,,a)} :
[9:.9,9,] > blg,,a,9,]
[91,a.9,]1 > blg,,a,4,]

For transition 6 (g,.a,a)={(g,,€)} :
[91,a,.9]1 > a

For transition &(g,,¢,Z,) = {(g,,€)} :

[91:24,4,] €

(Using construction rule 7;)
(Using construction rule P;)
(Using construction rule A7)
(Using construction rule 7)

(Using construction rule 7;)
(Using construction rule 7)
(Using construction rule 7)

(Using construction rule 7;)

(Using construction rule P;)

(Using construction rule 7))

(Using construction rule P;)

(Using construction rule P;)

(Using construction rule P,)

(Using construction rule P;)

6.46 FORMAL LANGUAGES AND AUTOMATATHEORY

Example 2 : Construct CFG G for the PDA given as follows :
5(g9,a,2Z,) = {(q0,9Z,)}
0(q¢,a,a) = {(g,,0a)}
5(gq,¢,a) = {(g,9)}
6(qq.b,a) = {(q0:5)}

5(q0 ,6720) = {(qo ’G)}
Solution :

Let G = (V, T,P.S), V = {[40: Zo,95 190,090 1} » £ = {a, b, c}, P consistsoffollowing
production rules :

§ 190, Z4590]:
For transition 6(g,.a,Z,) = {(gy,aZ,)}:
(905 Z0: 90 }>@ (9053, 90] (90, Z040]
For the transition §(g,,4a,a) = {(gq,aa)}:
(90+4,901—> @[45:2,90] (909 90]
For the transition §(g,,c,a) ={(gy.a)}:
[90:,90] > ¢[90,4: 9]
For the transition §(q,,b,a) = {(gy.€)}:
[90,a,90]1 > b
For the transition 6(q,.,s,Z,) = {(9¢,€)}:

[90:Z4590]1 €

Example 3 : Let M = ({g,q, },{a.b},{c.Z,},6,4,.Z,.#) isaPDAand § is defined as follows:
8(g9,a.Zy) =1{(q0:¢Z)}»
5(go,a,c) = {(go,c€)} s
0(qq,b,¢) =1{(9,€)} >
3(q1,b,0)={(q;; €)} »
d(q,.6) ={(g1:€)}»

8(g,£.Z,) ={(q,€)}
Construct CFG G generating N(M).

PUSHDOWN AUTOMATA

6.47

Solution :

1.

2.

3.
4.

Let G=(V,T,P,S),where

V contains elements from the set

{S,[q.,,c,qo],[qo,c,ql],[qo,Zo,qollqo,zo,qn]quc,qnl,[%sCﬂo], (9152031)191:24,90] s

Z = {a,b},
S is the starting symbol, and

P includes the following production rules.
For variable §

PSS > 1g4,Z4,90), and
Py§ = [q4.24.4,]

For variable [g,,Z;,q,] using transition 8(g,,a,Z¢) = {(g¢.¢Z)}

Pige.Zy.901>alqy,¢.94] [94:24.9,] and
Piigo.Z4.901>algo,¢,9,1[91524:90]

For variable [9,,Z,¢,] P19, Z,,9,] —a[qy,¢.490] [99-Z¢,9,]and

Plq0,Z0:9, > alag.c.q: 191,24, 91]

For variable [g,,c,q,] using transition §(g,,a,c) = {(gg,cc)}:
Pr{qo,¢,q90}>algq,¢.9,119,¢,9,], and

PsiQO’cqu] '—)a[qo’caQI][th:q(l]

For variable [g,,c,4,] :

Pylgg,c,q1] = algg,¢.451[90.¢,4,] and

Boilgosc.qy 1> algg.c.qy1 [9y,¢,4,]

Forvaﬁable [QosC,%] USing tl'anSiﬁon 5(qo»b,c) = {(QI’G)}:
P,{g¢.c,q,1> b

For variable [g,,Z,,q,] using transition &(g,.€.Z,) = {(g,,€)}
Py149:.Z4,9,1>¢

For variable [g,,¢,q,] using transition 5(g, c,c) = {(¢,.,€)}:
Pi3{q,,c,9,]>¢

For variable [g,,c,g,] using transition &(g,b.c)={(g,.€)} :
PIAiQI’C’qI] =k b

6.48 = FORMAL LANGUAGES AND AUTOMATATHEORY

We have no production for the variable [g,,Z,,q,] and [g,,¢,q,]. So, these are discarded
with their associated productions.

So, now we have following productions.
S > [90:Z5,90);

PyS = (40, Zp.4;):

Pi{q0.20,90) > dl405¢,90190:Z0590];
Ps{q0,Zy,91]1 alq0,¢,90[90:Z001]
Pilgo. Zosa 1> aldosc,a,1191. 20011
Py{gy,¢.9y]1 > algp,c,901(90:¢:90]
Bylge.c.q 1> algo.c.q01[90,6: 4115

Py lgg.c.q) algo.c.qg1.¢.9115
Py:lge.c,q,] > b,

Pyila.Zg,qi 1€

Paiqy,e,q1 €,

Rsilgrsc.q)] > b

In Production P,,and P,, variables [¢,,Z,q,] and [g,.c,q,] have right and left recursion
respectively but have no terminating production i.e. no terminal from these variables. So, all
the productions that include these variables including P, and P, are discarded.

Now, we have following productions included in P:
PyiS = (40,209,115

Felgo, Zo, a1 1> algo.c.qil91: 20,411 5
Poiqo,e,1] = algg.c;allqiseqls

Pyilgo.cq11 2 by

Poig1, 20011 €,

Psilgy.c.q 1€,

Palgneq 1= b

PUSHDOWN AUTOMATA 6.49

Theorem : Let L, be a context - free language and L, be aregular language. Then show that
L, N L, is context - free.

Proof :

Let M, =(Q, %, T, 8,, 45, Z, F}) beanNPDA whichaccepts Z, and M, =(P, L, T, &,.q,, F,)
be a DFA that accepts L, . We construct a pushdown automaton A -_-(Q,Z,I‘,¢§ Go-Z ,ﬁ‘)

which simulates the parallel action of M, and M, , wheneverasymbol is read from the input
string, jy simultaneously executes the move M, and A, .

Let 9=0x P, 4o =1(45: Po)> ﬁ=F}><F2
and define § suchthat, ((¢,.p,).x)e 8((q,,p,),a,b), ifand only if,
(9i» x) € 8(q,, a,b) and 6,(p.a)=p,
In this , we also require that if 4 =¢, then p; = p, . In other words, the states of yyare labeled

with pairs (g, p;) , representing the respective states in which M, and M, can be after reading
acertain input string, It is a straightforward induction argument to show that,

((4020)W.2) [* ((q,,P,)%),
with g, €K and p, € F,
ifand Ol’lly if, (90#:7) Ml(q,,x) and 3(1;0, W) =p,-

Therefore, a string is accepted by M' if and only if it isaccepted by M, and M, thatis, ifitisin
L(M)A L(My)=L,~L,.

6.50 FORMAL LANGUAGES AND AUTOMATA THEORY

REVIEW QUESTIONS

Q1. What is PDA ? Explain.
Answer :
For Answer refer to Topic : 6.1, Page No: 6.1.
Q2. Obtain a PDA to accept the language L(M) = { wCw"| w e(a+b)*} where

wh is reverse of W.
Answer :
For Answer refer to example - 1 , Page No : 6.6.
Q3. Obtain a PDA to accept the language L = { a" b"| n=1} by afinal state,
Answer :

For Answer refer to example - 2 , Page No : 6.9.

Q4. Obtain a PDA to accept the language L(M) = { wlw e(a+b)" and n, (w) =n,(w)}-
Answer :
For Answer refer to example - 3 , Page No: 6.12.
QS. Obtain a PDA to accept a string of balanced parentheses. The parentheses
to be consideredare (,) , [.]-.
Answer :
For Answer refer to example - 4 , Page No : 6.15.
Q6. Obtain a PDA to accept the language L ={ wlw e (a, b)*and n,(w) >n;(w) } -
Answer :
For Answer refer to example - 5, Page No : 6.17.
Q7. Obtain a PDA to accept the language Z = {a"b™"|n 21} .

Answer :
For Answer refer to example - 6 , Page No : 6.18.

PUSHDOWN AUTOMATA 6. 51

Q8. Obtain a PDA to accept the language 1 = {ww® | we(a+b)*} .
Answer :
For Answer refer to example - 7, Page No : 6.20.
Q9. Construct a PDA which accepts the set of strings over {a, b} with equal
number of &'s and b's such that all a's and b's are consecutive.
Answer ;

For Answer refer to example - 8 , Page No : 6.23.

Q10. Construct a PDA, which accepts L = {a"¢"b":m,n > I} .
Answer :

For Answer refer to example - 9 , Page No : 6.24.

Q11. Construct a PDA M, which accepts [, = {a"b"c™d":mn>1}
Answer :
For Answer refer to example - 10, Page No : 6.25.

Q12.Let M = ({ p,9},{0,1},{Z,,X}, 5.p.Z,.4) beaPDAwhere § is given by

following transitions.

O(pLZy) ={(P, XZ o)},

d(pe.Zy)={(pe).

o(p,,X)={(p,XX)},

6(g.1,X)={(q.€)} ,

o(p,0.X)=1{(q,X)},and

5(‘130,20) - {(Pszo)}
(a) What is the language accepted by this PDA by empty store ?
(b) Describe informally the working of the PDA.

Answer :

For Answer refer to example - 11 , Page No : 6.26.

Q13. Let O = ({90, 9:},{a.b}.{a,b.Z}, 6,9,,Z.9) be a PDA accepting by empty stack for
the language which is the set of all nonempty even palindromes over the set {a, b} . Below is

an incomplete specification of the transition §. Complete the specification. The top of the
stack is assumed to be at the right end of the string representing stack contents.

6.52 FORMAL LANGUAGES AND AUTOMATATHEORY

- 8(9¢,a,2) = {(44.2a)}

- 6(q0.0.2) = {(494,2b)}

« 0(g0+a,2) =it cin ey

B Qg Bl) Baisie :

- 0(gy,a,a)={(g,&)}

. 8(g,,b,b) ={(q,.€)} and
- 8(gq,.6,2) ={(q,.€)}

~N OO G A W N =

Answer :

For Answer refer to example - 12 , Page No : 6.27.
Q14. Distinguish between NPDA and DPDA.

Answer :

For Answer refer to Topic : 6.3 , Page No : 6.28.

Q15. Isthe PDA to accept the language L(M) = {w Cw® | w e(a+b)* }is deterministic or not?
Answer :

For Answer refer to example - 1 , Page No : 6.30.

Q16. Is the PDA corresponding to the language L={a"b"|n>1} by afinal stateis

deterministic or not ?
Answer :
For Answer refer to example - 2 , Page No : 6.31.
Q17. Isthe PDA to accept the language L(M) = {wiw € (a+b)* and n,(w) =ny(w) is
deterministic or not ?

Answer :
For Answer refer to example - 3 , Page No : 6.31.

Q18. Give a deterministic PDA for the language L = {a"cb® : n > 1} over
the alphabet £ = {a, b, c} . Specify the acceptance state.
Answer :
For Answer refer to example - 4 , Page No : 6.32

PUSHDOWN AUTOMATA 6.53

Q19.1f M, = (0,,%,T,,8,,p,,Z,,¢) is aPDA accepting CFL L by empty store then
there exists PDA M, =(0,,Z,T,,0,, p,,Z,,{q,}) whichaccepts L by final state.
Answer :

For Answer refer to Topic : 6.4.1 , Page No : 6.33.
Q20. Consider a nondeterministic PDA M, = ({g,}, {a,b}, {a,b,5}, 5,4,,5,¢) whichaccepts
the language 7. = {a"b" : n > 1} by empty store, where § is defined as follows :

5(qy,€,5) ={(qy.ab), (g9,aSh)} (Two possible moves),
d(gp,a.a)={(qq,€)},and &(gy.b,b) ={(qy,€)}
Construct an equivalent PDA M, whichaccepts L in final state and check whether string
= gabb is accepted or not ?
Answer :
For Answer refer to example , Page No : 6.35.
Q21. If M, = (Q,, 2,1, 8,, 44, Z,, F) isaPDA accepting CFL L by final state then
there exists PDA M, =(Q,, 2, T, 85,94, Z,, ¢) Whichaccepts L by empty store.

Answer :
For Answer refer to Topic : 6.4.2, Page No : 6.37.

Q22. ConsideraPDA M, =({gy,¢,» 42}, {0}, {8, Z0},8.0: Zo, g5 })- cOnvert it into PDA. M,
whose acceptance is by empty store. Check the acceptability of string w = aacaa .
The transition function 4, is defined as follows :

61(90,3:2,) =1{(90,9Z,)} »

d,(q0,a,a) = {(qg,aa)},

4,(g9,c,a)={(qy,a)}

J,(41-a,a) = {(g,,¢)} and

6 (91,8:25)={(92.Zo)}

Answer :

For Answer refer to example, Page No : 6.39.
QQ23. Explain procedure to construct PDA from CFG.
Answer :

For Answer refer to Topic : 6.5.1, Page No : 6.40.

6.54 FORMAL LANGUAGES AND AUTOMATA THEORY

Q24. Forthe grammar

S —» aABC

A — aBla

B — bAb

C - a Obtain the corresponding PDA
Answer :

For Answer refer to example - 1 , Page No : 6.41.
Q25. Construct PDA M equivalent to the CFG § — 0BB, B — 15|05 |0 and check whether
010000 is in N(M) ornot?
Answer :
For Answer refer to example - 2 , Page No : 6.43.
Q26. Explain procedure to construct CFG from PDA.
Answer :

For Answer refer to Topic : 6.5.2, Page No : 6.44.

Q27. Considerthe PDA M = ({g9, ¢}, {a,b},{a,Zy}, 5,40, Z¢:¢) accepting the
language L = {a"b™a" :m,n 21}, which has the following transition function.
6(go:a,2y) =1(99,0Z)}:
8(4¢,a,a) = {(gq.aa)},
8(go,b,a) = {(g1,a)},
8(qy,b,a) ={(g9,,a)}
8(q,,a,a) = {(g,,€)}, and
8(qy.6,Z) ={(q1,€)}
Construct a CFG G which generates the same language.
Answer :

For Answer refer to example - 1, Page No : 6.44.
Q28. Construct CFG G for the PDA given as follows :
8(90:9,Zo) = {(q9,9Z0)}
8(q4,a,a) = {(4,,4a)}
3(4q5¢,a) = {(9059)}

PUSHDOWN AUTOMATA 6. 55

5(q0,0,a) = {(g,.€)}
6(g0:5:Z0) = {(q0:€)}
Answer :
For Answer refer to example - 2, Page No : 6.46.

Q29. Let M = ({gq,¢,},{a,5},{¢,24}.8.44,Zo #) isa PDA and § is defined as follows:

0(q0:2.Z4) = {(q0¢Z)} »
8(405:0) = {(g0500)} »
6(q0,b,¢) = {(q::€)}
9(g,,8,¢) ={(q,, €)},
8(g1,60) ={(g1,€)}»
6(q,€.2,) = {(g,€)}
Construct CFG G generating N(M).
Answer :
For Answer refer to example - 3 , Page No : 6.46.
Q30. Let Z, be acontext - free language and 1, be a regular language. Then show that
L, n L, is context - free.
Answer :
For Answer refer to Theorem , Page No : 6.49.

FORMAL LANGUAGES AND AUTOMATATHEORY

OBJECTIVE TYPE QUESTIONS]

Choose the correct statements :
(a) the power of NPDA and DPDA are same

(b) the power of DFA and NDFA are different
(c) the power of DFA and NDFA are almost same

(d) None of the above
A PDA behaves like an FA when the number of auxiliary memory it has is
(a) 2 or more (b) 0 (c) 1 or more (d) none

A=(4o-91.97))- (@b} {a:b. 20} 8.0 Zo{ay})is aPDA, where ¢ is defined as
8(q0,aZ0)=1(a0,aZ0)}, 8(40,5,Z0)={(90,6Z0)}
8(g0,a,4)={(q0,44)}, 8(q0,,2)={(90,b4)}
8(qo, a,b)={(q0,ab)}, 8(qo, b,6)={(q0,b)}
8(qo,¢»a)={(q1, @}, 8(q0,:b) ={(q1,8)}, 8(q0. & Zo)={(@1, Z0)}
8(g),a,a)= 8(g1.5,0)={(9).€)}
(g1, Zo)= (a5, Z0)}

Match the ID that the PDA is in after the strings listed on the LHS are processed by the
PDA.

(i) abcba (A) (qo,€,babaZy)

(ii) abeb B) (91.€,0Zg)

(iii) acba ©) (q1.ba,aZg)

(iv) abab (D) (g7.€2Zp)
@DCAB 6)DCBA
(c)DBCA (dABCD
A pdais said to be deterministic if -

(a) 8(g.a,2) is either empty or singleton or &¢,&,2) # ¢ implies &g,a,2)=¢

(b) 8(g.a,2) is either empty or singleton & &(q.,2) =¢ implies 8(g,a,Z)=¢

(¢) 8(g,a,Z) is either empty or singleton & &¢.€,2) # ¢ implies &g,a,Z2)=$

(d) 5(g,a,2) is either empty or singleton or 3g.€,Z)=0¢ implies 8(g,a,Z)#¢

Let Ld be the set of all languages accepted by a PDA by final states and Le the set ofall
languages accepted by empty stack. Which of the following is true?

(@ Lg>Le (b) Ly=L,
(c) Both (d) None of the above.

PUSHDOWN AUTOMATA 6. 57

6.

10.

11.

12.

13.

Pushdown automata can recognize --—

(a) all regular languges, some nonregular languages, all context-free languages, and all
non-context -free languages.

(b) all regular languages, some nonregular languages, all context-free languages, and some
non-context - free languages.

(c) all regular languages, all nonregular languages, all context-free languages.

(d) all regular languages, some nonregular languages, all context-free languages.
GiventwoPDASM & M':

where M =(S,Z,T,8,q9, %y, F) andM'=(S,2I",5, 7'y, Z', F")

Which of the following conditions hold if L(M)=L(M").

(i) There is a one-to-one correspondance between accepting computations of M and M’

(ii) If M hasno A —moves, then M'hasno 4 -moves ; If M is unambiguous, then M'is
unambiguous.

(iii) Forall pes', all aeZU{e} ,all z 1, if (g, y)edd'(p,a,Z) then g<>qy' and | y|=<2

(a) Only (ii). (®)Only (1) & (ii)

(c) Only (i) (d) All of the above.

Running time of a finite automata (like NPDA) for an input string of length nis
(a) Can be anything depending on the automata (b) Exponentialinn

(¢) Polynomial inn (d)Linearinn

Which of'the following is false :

(a) Every CFL corresponds to a NPDA

(b) Ever NPDA corresponds to a CFL

(c) Both (a) and (b)

(d) None

Which of the following languages not is accepted by a NPDA

(a) a" 2" () wew” (c) ww (d) ww"

Let 1; be the set of the languages accepted by a NPDA and L, be the set of context free
languages. Then :

(@) Ly ®) =1 ©) Ll (d) none
If L is N(M) for some PDA M, the Lisa

(a) Regular grammar (b) Context sensitive language

(c) Context free language (d) none.

IfLisN(M) for some PDAM, thenLisa :
(a)RE (b) DCFL (c) CFL (d) none

6.58

FORMAL LANGUAGES AND AUTOMATATHEORY

14.

15.

16.

17.

18.

19.

Every regular set accepted by FA with n states is accepted by a DPDA with
states and n pushdown symbols

(a)n (b)1 (c)2 (d) none

A regular set accepted by DFA with n states is accepted to final state by a DPDA withn
states and at least, pushdown symbols

(a)3 (b) 1 (c)2 (d)none

Match the following :

(a) Type O grammar (a) A grammar G =(¥,T,S,P) in which all productions in P are

oftheform 4y where 4e¥ and xe (v uT)*

(b) Type 1 grammar (b) A grammar G =(¥.T,S,P) in which all productions in P

are of the form xe ywhere x,y (v uT)* and

yewur)® and |x|< y|

(c) Type 2 grammar (c) A grammar G =(V,T,S.P) in which all productions in P are
oftheform xe€ y where ye (v urm)* and (¥ (1)*

(d) Type 3 grammar (d) A grammar G =(¥,T,S,P) in whichall productions in P
are of the form 4 a and 4eaB where ;c 7*and 4,BeV

Which one of the following is true about PDA's

(@) 8:5x(Zufe))xI > SxT*
(b) PDA has an auxillary memory in the form of a stack.
(c) PDA is represented by 7-tuple (S, 2,18, g, Zg. F)

(d) all of the above

If for a language L we can find a RE then definitely (choose most appropriate) :
(a) we can draw DPDA for L (b) we can draw NPDA for L

(c) we can't draw NPDA for L (d) none.

Which of the following doesn't hold (in ID of pushdown automata) ?
(@) If (g, x,WU) - (1,€,U)then (¢,x,W) - (1,,2)
(b) If (g.x. W) > (1,€ Z)then (g,x,WU) - (t,y,U)
(©) If (g.%.W) - (1,5, 2) then (g, x, W) > (t,& Z)
(D If (¢, %) - (t,€ Z) then (g,30,#) - (t,5,Z)

PUSHDOWN AUTOMATA 6.59

20.

21.

22.

23.

24,

25.

26.

For Pushdown Automatas, which of the following is true.
@ If (¢.x.0)| (4, & y),theforevery per (4 x ap) ~(¢'.c.vP)

(®) 1 (q.x.0)" ~ (92,78, thenforevery e 5% (@ 1 a)| :(qz,y,ﬁ)

(c)Bothaandb.
(d) Only one out ofaorb
For Pushdown automatas, which of the following is true,

@ I (00| (g, &), heforevery g, @ xoB)—(ge.1B)

(b) IF (71’33“'). |=(g2,€.B) » then forevery)’e}:'.@hx%a)l "(‘12,)’,[3)

(¢)Bothaandb.
(d) Only one out ofaorb

1If 5 is the number of states in NDFA then equivalent DFA can have maximum of

(@) 2°<1states (b) o5 states (c) S-1 states (d) S states
Thelanguage ("} is

(a) Accepted by a NPDA not by a DPDA

(b) Accepted by a DPDA not by a NPDA

(c) Cannot say.

(d)None

Which of the following can not be accepted by Deterministic PDA
(@) &' V'rz1ud" " m=1 (b) wew

(©) "b'n=1 (d)none
APDA A is deterministic if :

(i) &g, 2) # ¢ implies 8(q,a,2) =pVae Z (ii) 5(q.a,z) is

(a) singleton (b) empty

(c¢) either(a) or (b) (d)none

Which of the following statements is false ?

(a) The class of sets accepted by pushdowm automata properly includes the regular sets.
(b) Inherently ambiguous languages can be modeled LR grammars.

(¢) A language is CFL iff it can be accepted by a Non deterministic PDA.

(d) A language is LR iff it can be accepted by a Deterministic PDA.

6.60

FORMAL LANGUAGES AND AUTOMATA THEORY

27.

28.

29.

30.

31

y

33.

A pda is said to be deterministic if :
(a) 8(g,a,2) is either empty or singletonor & (g,€,Z) # ¢ implies 8(g,a,2) # ¢
(b) 8(¢,a,2) iseither empty or singleton & (¢,€,Z) = ¢ implies &g,a.2) #¢
(c) 8(g,a,2) iseither empty or singleton & &g,& Z)# ¢ implies &(¢,4,2)=¢
(d) 8(q,a,2) is either empty or singleton or (¢,€,Z) = ¢ implies 8(g,a,Z) # ¢
Which of the following is accepted by an NPDA and not DPDA
(a) String ending with a particular alphabet
(b) All strings in which a given symbol is present atleast twice
(c) Even palindromes (i.e. palindromes made up if even no of symbols)
(d) None
Giventwo PDAsM & M':
where M =(Q.LT, 8,99,%),F) and
M=(Q,2.F, d’a qolszo.’ p)
Which of the following conditions hold if Z(A)=L(M").
(i) There is a one-to-one correspondance between accepting computations of M and M'
(i) If M has no e—moves, then M' hasno e—moves; If M is unambiguous, then M'is
unambiguous.
(iii) Forall pe@',all &Zuig}, all zer, if (¢,5)ed(p,a,2), then g <>¢'0 and | y|=<2
(2) Only (ii) (b) Only (i) & (ii)
(¢) Only (i) (d) All of the above.
For Deterministic Context Free languages, which of the following hold?
(i) The complement of a DCFL is a DCFL.
(ii) Let I be a DCFL and R is a regular set. Then L/R is a DCFL.
(iii) DCFL's are closed under intersection with a regular set.

(a) (i), (ii) and (iii) (b) (i) and (ii)

(c)(i)and (iii) (d) None of the above.
Complement I is:

(a)RL (b)deterministic (c) CFL (d)None
L.y is

(a)RL (b)deterministic ~ (c¢) CFL (d)None

If L, & I, are two deterministic languages L; L, is
(a)RL (b)deterministic (¢) CFL (d) None

PUSHDOWN AUTOMATA 6.61

34. Let A=({90,91,9s}.{a:b,c}, {a,5,Z,},6,40, Zo,{g,})isaPDA, where ¢ is defined as
(g0, a:Zy)=1(q0,9Z9)}, 5(q0,b,Z0) ={(90,6Z0)}
8(gp.a,a)={(g0.aa)}, 8(g0,b,a)={(q0,ba)}
8(q0,a,b6)={(g0, ab)}, 8(q9.b,6)={(q0.bb)}
5(gy,c,a)={(4,,a)}, 3(gp-:0)={(q1.5)}, (90,0, 25)={(91,Z0)}
8(q1.a,@)= 8(q1,b,)={(q1,€)}
dq1.& Zo)=1{(as.Z0)}

Then
(a) A is NPDA but not DPDA (b) AisaNPDA
(¢c)AisaDPDA (d) none

ANSWER KEY

10 2() 3.) 4 5@ 6(d) 70) 8d 9 10.()
1L(b) 12.¢) 13.c) 14.(b) 15.b) 16.a-c, b-b, c-a,d-d 17.(d) 18.(a)
19.(2) 20.(c) 21.(c) 22.(b) 23.(a) 24.(a) 25.c) 26.c) 27.c) 28.(c)
29.c) 30.c) 31.(d) 32.(b) 33.(c) 34.(c)

FORMAL LANGUAGES & AUTOMATA THEORY

UNIT-V
TURNING MACHINE

7

TURING MACHINES

After going through this chapter, you should be able to understand :

Turing Machine

Designof TM

Computable functions

Recursively Enumerable languages
Church's Hypothesis & Counter machine
Types of Turing Machines

7.1 INTRODUCTION

The Turing machine is a generalized machine which can recognize all types of languages viz,
regular languages (generated from regular grammar), context free languages (generated from
context free grammar) and context sensitive languages (generated from context sensitive grammar).
Apart from these languages, the Turing machine also accepts the language generated from
unrestricted grammar. Thus, Turing machine can accept any generalized language. This chapter
mainly concentrates on building the Turing machines for any language.

7.2 TURING MACHINE MODEL

The Turing machine model is shown in below figure . It is a finite automaton connected to read -
write head with the following components :

. Tape
. Read - write head
. Control unit
Tape
lewlalalal. bbbl T |

Read-write Head

Control
Unit

FIGURE : Turing machine model

1.2 FORMAL LANGUAGES AND AUTOMATATHEQRY

Tape : Itisatemporary storageandis divided into cells. Each cell can store the information of
only one symbol. The string to be scanned will be stored from the left most position on the tape.
The string to be scannied should end with infinite number of blanks. '

Read - write head : The read - write head can read a symbol from where it is pointing to and |
it can write into the tape to where the read - write head points to.

Control Unit: The reading / writing from / to the tape is determined by the control unit, The
different moves performed by the machine depends on the current scanned symbol and the
current state. The read - write head can move either towards left or right i.e., movement can be
on both the directions. The various moves performed by the machine are :

1. Change of state from ong state to another state
2. The symbol pointing to by the read - write head can be replaced by another symbol.
3. The read - write head may move either towards leftor towards right.

The Turing machine can be represented using various notations such as
N Transition table
N Instantancous description
. Transition diagram.

7.2.1 Transition Table

The table below shows the transition table for some Turing machixe. Later sections describe how
to obtain the transition table.

8 | Tape Symbols (I)
States a b X 1y B
% @ X.B | - - YR | -
i Ga® | @nD| - @t B |-
% (@na by | - @ X B | @D | -
2 - : - @ %R | @nBB
s) }] ; :

TURING MACHINES T3

Note that for each state g, there can be a corresponding entry for the symbol in 1. In this table
the symbols a and b are input symbols and can be denoted by the symbol 5, Thus S ¢ I

excluding the symbol B. The symbol B indicates a blank character and usually the string ends
with infinite number of B's 1. e., blank characters. The undefined entries indicate that there are no
- transitions defined or there can be a transition to dead state. When there is a transition to the

dead state, the machine halts and the input string is rejected by the machine. It is clear from the
table that

§:0%xTw(Ox Fx{LR})

where O= {40,91:%2, ¢5:943; T={a, b}

Ve{a b, X,Y, B}

g, isthe initial state; B isaspecial symbol indicating blank character

F ={g,} whichisthe final state.
Thus, a Turing Machine M can be defined as follows.
Definition : The Turing Machine M =(0.%,T,8,¢,,8,F) where

Q is set of finite states

¥ is set of input alphabets

I isset oftape symbols

& istransition function Q xI'fo (Q xI'x{L,R})

g, isthe initial state _

B is a special symbol indicating blank character

F ¢ issetof final states.

7.2.2 Instantaneous description (ID)

Uniike the ID described in PDA, in Turing machine (TM), the ID is defined on the whole string
{ not on the string to be scanned) and the current state of the machine.

Definition *

AnIDof TM isastring in a ¢, where q is the current state, o g is the string made from tape
symbols denoted by yi.¢., « and # ¢ I"*. The read - write head points fo the first character of
the substring 3. The initial ID is denoted by gof where q is the start state and the read - write

head points to the first symbol of o from left. The final ID isdenoted by o898 where ge F is
the final state and the read - write head points to the blank character denoted by B.

7.4 FORMAL LANGUAGES AND AUTOMATA THEORY

Example : Consider the snapshot of a Turing machine
Tape
la;]azlas'ias!q'z[ag{aéia-,lagl N

Read-write Head 1

~ Control
Unit

In this machine, each a,e T' (i.e.,each g, belongsto the tape symbol). In this snapshot, the
symbol a5 is under read - write head and the symbol towards left of g, 1.e., g, isthe current

state. Note that, in the Turing machine, the symbol immediately towards left of the read - write
head will be the current state of the machine and the symbol immediately towards right of the
state will be the next symbol to be scanned. So, in this case an ID is denoted by

gty 0y s gy lgnesrens
where the substring ¢a,a;4, towards left of the state g, is the left sequence, the
substring a,a,a,;..... towards right of the state g, is the right sequence and g, isthe current state
of the machine. The symbol a5 is the next symbol to be scanned.
Assume ihat the current ID of the Turing machine is a,4,0:0,9,3:a5,6;...... as shown in
snapshot of example. ' _
Suppose, there is a transition 8(¢,, a5) = (g3: b, B)

Tt means that if the machine is in state g, and the next symbol to be scanned is a5, then the
machine enters into state g, replacing the symbol a; by b, and R indicates that the read - write
head is moved one symbol towards right. The new configuration obtained is

0y @3 by Gy g e

This can be represented by a MOVe 88 4,¢,0,0, 45850501 dg.cr. |~ 418,030,533 3g. -

Similarly if the current ID of the Turing machine is ¢,a,0,6,4,85054745.-.»
and there is a transition

5(q,,as ¥=(qy,¢;,L)
tneans that if the machine is in state ¢, and the next symbol to be scanned is 4, thenthe machine
enters into state ¢, replacing the symbol a5 by ¢, and L indicates that the read - write head is
moved one symbol towards left. The new configuration obtained is

Ay Qs G A5 Cr s Ay dgerrenr

TURING MACHINES ' 7.5

This can be represented by amove as a,a,a,a, 4, 85060705 0 |+ 003054,0,C,05 0 g
This configuration indicates that the new siate is ¢, , the next input symbol to be scarmed

is a, . The actions performed by TM depends on
1. The current state.
2. The whole string to be scanned
3. The current position of the read - write head
The action performed by the machine consists of
1, Changing the states from one state to another
2. Replacing the symbol pointed to by the read - write head
3. Movement ofthe read - write head towards left or right.
7.2.3 The move of Turing Machine M can be defined as follows

Definition : Let M =(Q0,XT.5,9,.8,F) be a TM. Let the ID of M be

By By @ T gy orrnr Ty WhETE 0 T fOr 1< j<n-1, g € is the current state and 4, as

the next symbol to scanned. If there is a transition &g, a,) =(p, b, &)
thenthemove of machine Mwillbe a,0,0500 0@, G030y Gy, | =@10305 ey BD3 (el
Ifthere is a transition 8(q.a)=(p, b, L)

then the move of machine M will be

DT DY SUUNN- TRRY 1 N FUNONNR. SUR P71 ST PR () JUIRY - FUR TR

7.2.4 Acceptance of a language by TM
The language accepted by TM is defined as follows.

Definition :

Let M = (Q,Z.1,6.q,.B,F) bea TM. The language L(M) accepted by M is defined as
L(M) = {wigywh- *a, p o, Where wel* pe F and oy, ;e T*}
i.e.,setofall those words win 3+ which causes M to move from start state g, to the final
state p. The language accepted by TM is called recursively enumerable language.

The string w which is the string to be scanned, should end with infinite number of blanks.
Tnitially, the machine will be inthe start state g, withread - write head pointing to the first symbol
of witom left. After some sequence of moves, if the Turing machine enters into the final state and
halts, then we say that the string w is accepted by Turing machine.

7.5 FORMAL LANGUAGES ANDAUTOMATATHEORY

7.2.8 Differences between TM and PDA
Push Down Automa :

1. A PDAisanondeterministic finite automaton coupled with a stack that can be used to store
astring of arbitrary length.

2. The stack can be read and modified only at its top.

3. A PDA chooses its next move based on its current state, the next input symbol and the
symbol at the top of the stack.

4. There are two ways in which the PDA may be allowed to signal acceptance. One is by
entering an accepting stafe, the other by emptying its stack.

5. D consisting of the state, remaining input and stack contents to describe the "current condition”
of aPDA.

6. The languages accepted by PDA's either by final state or by empty stack, are exactly the
context - free languages.

7. A PDA languages lie strictly between regular languages and CSLs.

Turing Machines :

1. The TMisan abstract computing machine with the power of both real computers and of
other mathematical definitions of what can be computed.

2. TM consists of a finite - state control and an infinite tape divided into cells.

TM makes moves based on its current state and the tape symbol at the cell scanned by the

tapehead.

The blank is one of tape symbols but not input symbol.,

TM accepts its input if it ever enters an accepting state.

The languages accepted by TM's are called Recursively Enumerable (RE) languages.

Instantaneous description of TM describes cumrent configuration of a TM by finite - lengfh string.

Storage in the finite control helps to designa TM for a particular language.

ATM can simulate the storage and control of a real computer by using one tape to store all

the locations and their confents.

E.J)

O 90 B L

7.3 CONSTRUCTION OF TURING MACHINE (TWM)

In this section, we shall see how TMs can be consiructed.
Example 1: Obtain a Turing machine to acceptthe language L = { 0 "1" jn21}.

Solution : Note that n number of ('s should be followed by n number of I's. For this let us
take an example of the string 1 = gogo1111. The string w should beaccepted as it has four zeroes
followed by equal number of 1's.

TURING MACHINES 1.7

General Procedure :
Let ¢, bethe start state and let the read - write head points to the first symbol of the string to be
scanned. The general procedure to design TM for this case is shown below
1. Replace the left most 0 by X and change the stateto ¢, and then move the read - write head
towards right. This is because, aftera zero is replaced, we have to replace the coresponding
1 so that number of zeroes matches withnumber of 1's,
2. Search for the leftmost 1 and replace it by the symbol Y and move towards left (soasto
obtain the lefimost 0 again). Steps 1 and 2 can be repeated.
Consider the situafion
XX00YY11
1
95
where first two 0's are replaced by Xs and furst two I's are replaced by Ys. In this sitvation, the
read - write head points to the left most zero and the machine is in state g, . With thisas the
configuration , now let us design the TM.
Step 1: Instate g, replace 0 by X, change the state to ¢, and move the pointer towards
right. The transition for this can be of the form '
&qo, 0} = ((Iz;_ X, R
The resulting configurationis shown below .
XXX0YY1)
)
a4
Step 2 : Instate q;, we have to obtain the left - most 1 and replace it by Y. For this, letus move

the pointer to poinit to leftmost one. Whenthe pointer is moved towards 1, the symbols encountered
may be 0 and Y. rrespective what symbolis encountered, replace 0 by 0, Y by Y, remain in state

g, and move the pointer towards right. The transitions for this canbe ofthe form
d{q, 0)=(q, 0,R)
5(9; :-Y)x(‘:?l aYsR)

When these transitions are repeatedly applied, the following configuration is obtained.

XXX0Yyll

T
4,

7.8 FORMAL LANGUAGES AND AUTOMATA THEORY

Step 3 : Instate ¢,, if the input symbol to be scannedisa 1, then replace 1 by Y, change the
state to ¢, and move the pointer towards left. The transition for this can be of the form

5(?2 sl}w(q ZSYJL)
and the following configuration is obtained.
XXX0YYYH

T

q2
Note that the pointer is moved towards left. This is because, azero is replaced by X and the
corresponding 1 is replaced by Y. Now, we have to scan for the left most 0 again and so, the
pointer was move towards left. _
Step 4 : Note that to obtain leftmost zero, we need to obtain right most X first. So, we scan for
the right most X. During this process we may encounter Y's and 0's . Replace Yby Y, 0 by 0,

remain in state g, only and move the pointer towards left. The transitions for this can be of the

form {5((}2,}’)3{{;2,}’,}:)
5(42a0)=(Qz 0,L)
The following configurationis obtained
XXX0YYYI
?
q1

Step 51 Now, we have obtained the right most X. To get leftmost 0, replace X by X, change
the state to g, and move the pointer towards right. The transition for this can be of the form
(g2, X)=(gs: X . K)

and the following configuration is obtained
XXXOYYY!L

)
4o
Now, repeating the steps 1 through 5, we get the configuration shown below :
- XXXXYYYY

t
dy
Step 6 : Instate g, , if the scanned symbol is Y, it means that there are no more 0's. f there are

10 zeroes we should see that there are no 1's. For this we change the state to g, , replace Yby Y
and move the pointer towards right. The transition for this can be of the form

TURING MACHINES 7.9

5(q9.Y)=(4;,7,R)
and the following configuration is obtained
XXXXYYYY
T
s
Instate ¢, , we should see that there are only Ys and nomore 1's. So, as we canreplace Yby Y
andremainin g, only. The transition for this can be of the form
8(qs.Y)=(gq5,¥ ,R)
Repeatedly applying this transition, the following configuration is obtained .
XXXXYYYYB
4
CE]
Note that the siring ends with infinite number of blanks and sd, instate ¢, if we encounter the
symbol B, means that end of string is encountered and there exists n number of O's ending withn
number of 1's. So, in state ¢, , on input symbol B, changé the state to ¢, , replace BbyBand
move the pointer towards right and the string is accepted. The transition for this can be of the
form 6(q;.8)=(q4.8.R)

The following configuration is obtained
XXXXYYYYBB
')
g4

So, the Turing machine to accept the language I ={o” ™| n21}
isgiven by M ={0,5.1,0,94,B.F)
where
0= (@ a3} E=(01}; T={01X7 B}
go €O Isthe startstate of machine; B e isthe blank symbol.
F ={g,} isthe final state,
S is shown below.
(g, O = (g, X, B)
5(q4.0)=(q,,0,R)

7.10 FORMAL LANGUAGES AND AUTOMATA THEORY

5(q.,Y)=(q:,Y,R)
F(q,1) =(q2.Y L)}
5(q,.Y)=(q,,Y,L)
8{(g4,0)=(g,,0,4)
(g1, X)=(go.X,R)
8{go.Y)=(g:.Y . R}
5(q5,Y)=(g:.Y.R)

6(q5,B)=(q4,B.R)
The transitions can also be represented using tabular form as shown below.

) Tape Symbols (I') i
States 0 1 X Y B
9o (g, X, R) - - (g3, ¥, R} -
@ (4::0.8) (g2, ¥ 1) - (@, V. R) -
4 (¢,,0,L} - (90, X, B (g Y. 1) -
9 - - - (g3, 1, B (94: B, B)
s - - . . -

The transition table shown above can be represented as transition diagram as shown below :

Y/YR YL
0OR oL

To accept the string :

The sequence of moves or computations (IDs) for the string 0011 made by the Turing machine
are shown below :

TURING MACHINES 7.1

Initial ID :

go0011 |- Xg,011 |- X 0g,11
- Xq,071 - g, X0Y1
b XgoOY1 - XXq Y1
- Xyl b XXg¥Y
- X XYY o XXgeYY
- XXYqY - XXV
[~ XXYYBq,

(Final ID)

Example 2 : Obtain a Turing machine to accept the language L (4) = { 0" 1"2" {n 2 1}

Solution : Note that n number of 0's are followed by n number of 1's which in turn are followed
by n number of 2's. In simple terms, the solution to this problem can be stated as follows :

Replace first n number of (s by X's, next n number of 1's by Y's and next n number of 2sby
Z's, Consider the situation where in first two {'s are replaced by X's , next immediate two 's are
replaced by Y's and next two 2's are replaced by Z's as shown in figure 1(a).

XXOOYYI1ZZ22 XXOYY11Z2Z222 KXXKOYY 1127222
1 1 0
do - 4,
(@ (b) ©

_ FIGURE 1 : Various Configurations
Now, with figure 1(a). a as the current configuration, let us design the Turing machine. In

state ¢, ,if the next scanned symbol is 0 replace it by X, change the state to ¢, and move the
pointer towards right and the situation shown in figure 1(b) is obtained . The transition for this can
be of the form
5(g,,0)=(g1. X, R)
Instate g, we have to search for the leftimost 1. It is clear from figure 1(b) that, when we
are searching for the symbol 1, we may encounter the symbols 0 or Y. So, replace O0by 0, Y by
Y and move the pointer towards right and remain in state g, only. The transitions for thiscan be

ofthe form 5{g¢,,0¥=(q,,0,R)
8{q,.Y)={q,¥.R)

7.12 FORMAL LANGUAGES AND AUTOMATA THEORY

The configuration shown in figure 1(c) is obtained. Instate ¢,,on encountering 1 change the

state 10 ¢, , replace 1 by Y and move the pointer towards right. The transition for this can be of
the form

§(q,.1)=(q,,7 ,R)
and the configuration shown in figure 2(a) is obtained

XXXOYYY1ZZ722 XXXOYYY 12222 XXXOYYYIZZZ2
7) t
41 P qs
@ (b) ©

FIGURE 2 : Various Configurations
Instate g,, we have to search for the leftmost 2. It is clear from figure 2(a) that, when we
are searching for the symbol 2, we may encounter the symbols 1 or Z. So, replace 1 by 1, Z by
7 and move the pointer towards right and remain in state ¢, only andthe configuration shownin
figure 2(b) is obtained. The transitions for this can be of the form
5(q1,1)=(42,1,R)
5(g,,2)=(q,,Z.,R)
fnstaie g,, onencountering 2, change the state to g, , replace 2 by Z and move the pointer
towards lefi. The transition for this can be of the form
8(g4,.2)=(g35,2,L)
and the configuration shown in figure 2(c) is obtained. Once the TMis instate g, ,it means that
equal number of 0's, 1's and 2's are replaced by equal number of X's, V's and Z's respectively.
At this point, next we have to search for the rightrost X to get leftmost 0. During thisprocess, it

is clear from figure 2(c) that the symbolssuch as Z's, 1,8, Y's, 0's and X are scanned respectively
one after the other. So, replace Z by Z, 1 by 1, Y by Y, 0 by 0, move the pointer towards left and

stay in state g, only. The transitions for this can be of the form
§(q5,2)=(45.Z,L)
3{q;.1)=(gq5.1,1)
6{(q4.Y)=(g;,¥,L)
5{¢;.0)=(g5.0,L)
Only on encountering X, replace X by X, change the state 10 ¢, and move the pointer
towards right to get leftmost 0. The transition for this canbe of the form
8(gs5, X y=(g,.X,R)

TURING MACHINES 7.13

All the steps shown above are repeated till the following configuration is obtained.
XXXXYYYYZZIZ

t
_ 4o
In state g, , if the input symbol is Y, it means that there are no ('s . If there are no ('s we

should see that there are no 1's also. For this to happen change the state to ¢, , replace Yby Y
and move the pointer towards right. The transition for this can be of the form
5(qo.¥ y=(g4.Y ,R)
In state g, search for only Y's, replace Y by Y, remain in state g, only and move the pointer -
towards right. The transition for this can be of the form

5_(‘}431,):(@4’st)
In state ¢, ,if we encounter Z, it means that there are no 1's and so we should see that there

* areno 2's and only Z's should be present. So, on scanning the first Z, change the state to g, ,
replace Z by Z and move the pointer towards right, The transition for this can be of the form
8(44.2)=(45,2,R)

But, instate ¢, only Z's should be there and nomore 2's. S0, as long as the scanned symbol
is 7, remain in state ¢, , replace Z by Z and move the pointer towards right. But, once blank
symbol B is encountered change the state to ¢, , replace B by B and move the pointer towards
right and say that the input string is accepted by the machine. The transitions for this can be of the
form 8(g5.2)=(g5.Z . R)
5(q5.8)=(g.B,R)
where ¢, is the final state. '
So, the TM to recognize the language = { 0"1"2"| n 2 1} is givenby

M ={Q,5,T.6.94,B.F)

where
Qm{QOHQHQE’QBv_‘?4’Q§9QG}_; ={0,12}
I'=4{0,1 2, X, 1, Z, B}; g, istheinitial state
B is blank character ; F={ g, }isthe final state

5 is shown below using the transition table.

7.14 FORMAL LANGUAGES ANDR AUTOMATATHEORY

r
States | 0 1 2 Z Y X B
g 149,-%R g, LR
g |9.%R |4,.YR g, YR
4, g,:1.R ig,.LL g, LR
g, | 4,,0.L g,, LL q,Z.L g, Y.L g, X,R
g, q.ZR1q, . X.R
4s g, LR (6. B, B
q,
The transition diagram for this can be of the form

YIY R LR

o0k IR omL

Example 3 : Obtaina TMtoacceptthelanguage L = {w]w «(0+1)%} containing the substring 001.

Solution : The DFA which accepts the language consisting of strings of O's and 1'shavingasub
string 001 is shown below

The transition table for the DFA is shown below:

TURING MACHINES

0 1
9 4, 94
4 P)
q, 4, 1
4 g, 4

We have seen that any language which is accepted by a DFA is regular. As the DFA processes
the input string from lefi to right in only one direction, TM also processes the input string in only
one direction (unlike the previous examples, where the read - write header was moving in both
the directions), For each scanned input symbol (either 0 or 1), in whichever state the DFA was
in, TM also enters into the same states on same input symbols, replacing 0 by O and 1 by 1 and
the read - write head moves towards right. So, the transition table for DFA and TM remains
same (the format may be different. It is evident in both the transition tables). So, the transition
table for TM to recognize the language consisting of O's and 1's with a substring 001 is shown

helow:
0 1 B

g, Q;:{LR G IsR -
4 qz,O,R 7,- 1, R -
4, Qz:O’R s LR _ -
qs QH(}’R Q;eIsR quBsR
4,

The TMis given by _

M =(0.5,7,0,9:.B,F)

where .

Qm {qa: [PRL/ PP P CL} 4 Z={0,1

T={0,1}; §- isdefinedalready
g, istheinitial state; DB blank character
F={ g, }isthe final state

The transition diagram for this is shown below.

7.186 FORMAL LANGUAGES AND AUTOMATA THEQRY

Example 4 : Obtaina Turing machine to accept the language containing strings of ('s
and 1'sending with 011,

Solution : The DFA which accepts the language consisting of strings of 0's and 1's ending
with the string 001 isshown below : .

The transition table for the DFA is shown below:

& 0 1

96 4, 4
4, g g
‘A _ g, 4
g, g, s

We have seen that any language which is accepted by a DFA is regular. As the DFA processes
the input string from left to right in only one direction, TM also processes the input string in only
one direction. For each scanned input symbol (either 0 or 1), in whichever state the DFA was
in, TM also enters into the same states on same input symbols, replacing 0 by Oand 1 by | and
the read - write head moves towards right. So, the transition table for DFA and TM remains
same { the format may be different. It is evident in both the transition tables). So, the transition
table for TM to recognize the language consisting of (s and 1's ending with a substring 001 is
shown below :

TURING MACHINES

8 0 1 B
% 7..0.R g,» LR -
g, q,0,R g,» LR -
q, g,,0.R g,- LR .
q, q,-0,R g.> LR g..B. R
g, . - -

The TMisgivenby M =(0.5,1.8.9,.8.F)
where
0= {40 G04:o0, } 3 T=01} 5 T={0,1}
& - is defined already
g, istheinitial state ; B doesnot appear
F={ g, }isthefinal state
The transition diagram for this is shown below:

I/L,R OOR

Example 5 : Obtain a Turing machine to accept the language
L={wlwis evenand L= {a,b}}
Solution :

The DFA to accept the language consisting of even number of characters is shown below.

a, b

B @

a,b

7.18 - FORMAL LANGUAGES AND AUTOMATA THEORY

The transition table for the DFA is shown below :

a b
s - g, 4
q, 4, g,

We have seen that any language which is accepted by a DFA is regular. Asthe DFA processes
the input string from left to right in only one direction, TM also processes the input string inonly
one direction. For each scanned input symbol (either a or b), in whichever state the DFA was in,
"TM also enters into the same states on same input symbols, replacing aby aand bby band the
read - write head moves towards right. So, the transition table for DFA and TM remains same
(the format may be different). So, the transition table for TM to recognize the language consisting
of a's and b's having even number of symbols is shown below

& a b B
q‘a q;a&R 915b3R q;:BQR
d, QGSa’R ‘Ze’b’R -
N 4, " - -
The TMis givenby
M m(_Q,E,I”,é',qa,B,F}
where
Q={ g»a b I={gb} ; I={ab}

§ - isdefined already ; ¢, istheinitial siate
R does not appear ; F = { g, } is the final state

The transition diagram of TM is given by

#/a,R

TURING MACHINES 7.19

Example 6 : ObtainaTuring machine to accept a palindrome consisting of a's and b's of any length.
Solution : Letus assume that the first symbol on the tape is blank character B and is followed
by the string which in turn ends with blank character B. Now, we have to design a Turing machine
which accepts the string, provided the string is a palindrome. For the string to be a palindrome,
the first and the last character should be same, The second character and last but one character
in the string should be same and so on. The procedure to accept only string of palindromes is
shown below. Let g0 be the start state of Turing machine.

Step 1 : Move the read - write head to point to the first character of the string. The transition

for this can be of the form 5{g4.8)=(¢.B,R)
Step 2: Instate g,, if the first character is the symbol a, replace it by B and change the state
10 ¢, and move the pointer towards right, The transition for this can be of the form
6(q1,a)=(q,,8,R)
Now , we move the read - write head to point to the last symbol of the string and the last

symbol should be a. The symbols scanned during this process are a's , b's and B. Replace a by
a, bby b and move the pointer towards right. The transitions defined for this can be of the form

6(q;:a)=(q,,a,R)
F(g,.b)=(q,.b.R)
But, once the symbol B is encountered, chénge the state to ¢, , replace B by B and move the
pointer towards left. The transition defined for this can be of the form
8(g2,B)=(¢;:,8,L)
Instate ¢, , the read - write head points to the last character of the string, If the last character
is a, then change the state to g, replace a by B and move the pointer towards left. The transitions
defined for this can be of the form

5(93’9):(‘31&8:1’)
At this point, we know that the first character is a and last character is also a. Now, reset the
read - write head to point to the first non blank character as shown in step5.

In state ¢, ,if the last character is B (blank character), it means that the given string is an odd
palindrome. So, replace B by B change the state to ¢, and move the pointer towards right. The
transition for this can be of the form

' §{(q,,B)={(q,,B.R)
Step 3 : Ifthe first character is the symbol b, replace it by B and change the state from ¢, 1o g,
and move the pointer towards right. The transition for this can be of the form
5(q:1,6)=(g5,B,R)

7,20) FORMAL LANGUAGES AND AUTOMATA THECRY

Now, we move the read - write head to point to the last symbol of the string and the last
symbol should be b. The symbols scanned during this process are a's,b'sand B. Replaceaby a,
b by b and move the pointer towards right. The transitions defined for this can of the form

8(q5.a)=(gs5,a,R)
F(qs,0)=(g5,0,R)
But, once the symbol B is encountered, change the state to ¢, replace Bby B and move
the pointer towards left. The transition defined for this can be of the form
&{q5,8)=(q6,B,L)
Tn state g, , the read - write head points to the last character of the string, Ifthe last character
isb, then change the state to g, , replace b by B and move the pointer towards left. The transitions
~ defined for this can be of the form

5(?6’27)&(?‘49331‘)
At this point, we know that the first character is b and last character is also b. Now, reset the
read - write head to point to the first non blank character as shown in step 5.

Instate g, , Ifthe last character is B (blank character), it means that the given string is an
odd palindrome. So, replace B by B, change the state to ¢, and move the pointer towards right.
The transition for this can be of the form _

_ 5(q4.8)=(q,,B.8)
Step 4: In state g¢,, ifthe first symbol is blank character (B), the given string is even palindrome
and so change the state to g, , replace B by B and move the read - write head towards tight. The
transition for this can be of the form

_ §(q,,B)=(q7.B.R)
Step 5: Resettheread - write head to point to the first non blank character. This canbe done

~ asshown below.

If the first symbol of the string is a, step 2 is performed and if the first symbol of ihe string is
b, step 3 is performed. After completion of step 2 or step 3, it is clear that the first symbol and the

Jast symbol match and the machine is currently in state g,. Now, we have to reset the read - write
head to point to the first nonblank character in the string by repeatedly moving the head towards
left and remain in state g, . During this process, the symbols encountered maybeaorbor B
{ blank character). Replace aby a, b by band move the pointer towards left. The transitions
defined for this can be of the form 5(q.,a)=(g4,a,L)

6(‘?4xb):=(qft!b?£)

TURING MACHINES 7.21

But, if the symbol B is encountered , change the state to ¢, , replace B by B and move the pointer
towards right. the transition defined for this can be of the form

6(q4,8)=(q,,B,R)
After resetting the read - write head to the first non - blank character, repeat through step 1.
So, the TM toaccept strings of palindromes over { a,b } isgivenby M =(Q, ¥, &, ¢,,B.F)
where O= {49,,4,9,.9,,9,-9:-40:4,} 3 Z={a, b} ; I'={ab B}; g, istheinitial state
Bisthe blank character; F={ ¢, }; § is shown below using the transition table

r

) a b B

95 . - g,B, R
g, g,-B.R g, B,R 7,-B.R
q, g8 R g,, 5, R g,,B,L
4, g, 8, L - g,,B, R
q, g,,a L g,.b, L g,,B,R
q, g,» 8 R g,,b, R g,,B,L
4 - q.,-B, L g,-B, R
q, . - .

The transition diagram to accept palindromes over { a,b }is given by

BAB.R

The reader can trace the moves made by the machine for the strings abba, aba and agba and is
left as an exercise.

7.22 . FORMAL LANGUAGES AND AUTOMATATHECRY

Example 7 : Construct a Turing machine which accepts the language of aba over £={a,b}.

Solution : ThisTMisonly for L={aba}
We will assume that on the input tape the string 'aba’ is placed like this

a b a B Bl e

1\.
‘The tape head will read out the sequence upto the B character if "aba’ is readout the TM will
halt after reading B.

@ {a.2.R) . @ (bbR) @ (@aR)

The triplet along the edge written is { input read, output to be printed, direction)
Let us take the transition between start state and ¢, is(a, a, R ythat is the current symbol

read from the tape is a then as a output a only has to be printed on the tape and then move the
tape head to the right. The tape will look like this

a b a B Bl ..
0
Again the transition between ¢, and ¢, is (b, b, R). That means read b, print b and move
right. Note that as tape head is moving ahead the states are getting changed.

a b a B B
T

The TM will accept the language when it reaches to halt state. Halt state is always a accept
state for any TM. Hence the transition between ¢, and haitis (B, B, S). This means read B, print
B and stay there or there is no move left or right. Eventhough we write (B, B, L) or (B, B, R}
itis equally correct. Because after all the complete input is already recognized and now we
simply want to enter into a accept state or final state. Note that for invalid inputs suchas abb or
ab or bab there is either no path reaching to final state and for such inputs the T™ gets
stucked in between. This indicates that these all invalid inputs can not be recognized by our TM.

The same TM can be represented by another method of transition table

TURING MACHINES

7,23

a b
Start (g,,0.8) - -
4, - {4,.5,R) -
4 - (4,,a.R) - -
g, - - (HALT, B, S)
HALT - - -

Inthe given transition table, we write the tripletin eachrowas :
{(Next state, output to be ?rinted, direction)
Thus TM can be represented by any of these methods.

Example 8 ; Design a TMthat recognizes the set L= {0 1"|n 2 0}.

Solution : Here the TM checks for each one whether two ('s are present in the left side. If it

rpatch then only it halts and accept the string.

The transition graph of the TM is,

FIGURE : Turing Machine for the given language L= {(*1"ln2 0}

7.24 FORMAL LANGUAGES AND AUTOMATATHECRY

Example 9 : Design Turing machine to recognize the palindromes of digits { 0, 1} . Give its state
fransition diagram also.
Solution : The construction is made by defining moves in the following manner.

i, The machine scans the first input symbol { either 0 or 1), erases (but remembers) it,
writes a blank symbol in place and changes state (g, or g,) -

i Tiscansthe remaining part without changing the tape symbol until it encounters b. I then
moves the read / write head a step left. If the rightmost symbol tallies with the lefimost
symbol, the rightmost symbel is erased. Otherwise T. M. haits. The read/write head
moves to the left until b is encountered. '

ii. The above steps are repeated after changing the states suitably.

The transition table is shown below.

Present State Tape Symbols
: 0 1 b
—3 q, bRy, bRq, bRy,
g, 0Rg, 1Ry, biq,
g, - 0Rg, 1Rg, bLg,
4 blg, - bRys
4. - blg, bRy,
qs 0Lqg, LLg, bRy

The transition diagram is shown in below figure.

0,06, R
LLR

FIGURE : Transition State Diagram for the Palindromes

TURING MACHINES 7.25

Example 10 : Design a Turing machine that accepts L = {a"b"{n2 0} .
Solution : The 1ogic that we use for the Turing machine {o be consiructed is,

The Turing machine will remember lefimosta, by replacing it with B, then it moves the tape head
right keeping the symbols it scans asitis, until it gets rightmost b, it remembers rightmost b, by
replacing it with B, and moves the tape head left keeping the symbols it scans as it is till it reaches
the B, on getting B, it moves the tape head one position right and repeats the above cycle if it gets
a. Ifit gets B instead of a, then it is an indication of the fact the string is of the form 44, hence
the Turing machine enters into the final state. Therefore, the moves of the Turing machine are
givenin below table .

. a b B
4o (g.. B, R) (9., B, R)
g, (4,59, R) (9.6, B (4.,8,1L)
7, : (¢:,B,L)
‘2 (q,.a,L) (q,.6,1) {g,: 8, 8)
4,

TABLE : Moves of the Turing Machine for the given language

Therefore, the Tllﬁﬂg TfiﬁC}}iﬁe M 4{‘]’0 sJysq2:93:94),{O, b}s{a sbsB}s§ 9 Bﬁ{q‘i }) » where iS
given above.
The transition diagram corresponding to the above Table is shownin below figure.

FIGURE : Transition Diagram for the above Table

7.26 FORMAL LANGUAGES AND AUTOMATA THEORY .

Example 11 : What does the Turing Machine described by the 5 - tupiszs.,
(qa 3(}) h ,Z, R)a(t?a »Zs qz ,0,?‘),(% L Ba (1’2 E] Bs R) ¥

(4,.0.q,.0, R). (4,,1,4,,, R) and (g,,B.q,,B,R) Dowhengiven a bit string
asinput ?

Solution ; The transition diagram of the TMis,

o1 R

FIGURE : Transition Diagram for the given TM
‘The TM here reads an input and starts inverting 0's to 1's and 1's to O's till the first 1.
After it has inverted the first 1, it read the input symbol and keeps it asitis till the next 1.
After encountering the 1 it starts repeating the cycle by inverting the symbol till next 1. It halts
when it encounters a blank symbol,

7.4 CONPUTABLE FUNCTIONS

ATuring machine is a language acceptor which checks whether a string x is accepted by a
language L. In addition fo that it may be viewed as computer which performs computations of
functions from integers to integers. In traditional approach an integer is represented in unary, an
integer ;> ¢ isrepresented by the string ¢/ .

Example 1 : 2is represented as 2 . If a function has k arguments, i, iy, co.....dy., then these

integers are initially placed on the tape separated by 1's,2s 0°10 % 1 ... 10% .

Tf the TM halts (whether in or not in an accepting state) with a tape consisting of 0's for some m,
then we say that £(i,, i;,......dy) =m, where fisthe function of k arguments computed by this
Turing machine.

TURING MACHINES 7.27

Example 2 :
Consider a functioninC.
intsum (intx, inty, intz)

{ ints;
S=EXty+2Z;
return s;

Suppose this function is invoked using statement,

c=sum{2,3,4); _
After invoking sum (), ¢ will have the value 9. The same computation can be performed by
Turing machine also, Initially, the Turing machine will have the arguments of sum{) i.e., 2,3,40n
its tape as shown in figure (a).

Finite
Control
oflol1]|oicio|1io|ojoloeiBlBlB
L..WY_._.J Y v 4 A, _p)
2 . 3 4
(a) Before Computation

This Taring machine performs the sum of these arguments. After some moves it halis with the
tape containing value 9, as shownin figure (b). :

Finite
Controt
Pl .
sioloioclolololololB|BIB| BB
.. I
e ;
9
{b) After Computation

FIGURE : Elements on Tape to Compute Sum

Note that a Turing machine may compute a function of one argument, a function of two arguments
and so on. The Turing machine given in figure can perform sum of two arguments or three arguments
or in general sum of any finite number of argurnents.

7.28 FORMAL LANGUAGES AND AUTOMATA THEORY

If TM M computes function fof k arguments i then fneed not have a value for all different
k - tuples of Integers i, iy, ... iy AF Fip, iys oo i) is defined forall, i,... 7, , then we say fisa
{otal recursive function, otherwise we say fis partial recursive function. Total recursive functions
are analogues to recursive language because they are computed by TM that always halts. Partial
recursive function are analogues to recursively enumerable languages. Because they are computed
by TM that may or may not halt. Examples of total recursive functions, all common arithmetic
functions on integers, such as multiplication ete, are total recursive functions.

Example 3 : Construct Turing machine to find proper subtraction m - n is defined to be
m - n for m>»n and zero form <n.

Solution : The TM M = ({qo,dy» -ds}» (0, B> (0, 1, B}, &, o, B, #) defined below, started
with gn /¢ onits tape, halts with gn- on its tape. M repeatedly replaces its leading 0 by blank,
then searches right for a 1 followed by a 0 and changes the 0 to 1. Next, Mmovesleft until it
encounters a blank and then repeats the cycle. The repetition endsif

i Searching right for a 0, M encounters a blank. Then, then0'sin 0" 10" haveall changed 0
I'sandn+ 1 ofthe m O's have been changed to B. M replaces the n+ 1 I'sbya O and
n B's leaving m - n 0's on its tape.
i, Beginning the cycle, M cannot find a 0to change to 2 blank, because the first m O isalready
have been changed. Then n> m. Som-n="0. Mreplaces all remaining 1'sand ('s by B.
The function & is described below.
I‘ 6(‘?09 {}) o= (q: B’ R)
Begin the cycle, Replace the leading O by B.
2' 5(‘113 G) = (‘ha 03 R)
5(@132) = (Qz] 13 R)
Search right, looking for the first 1.
3' 5('2291} = (QZa 13 R)
800 = g5 1 L)
Search right past 1's until encountering a 0, change that to 1.
4‘ 5(4330) = (q:is 9& L}
5(@'3,?) = (q3a 1: L)
(g3, B) = (40, B, R}
Move left to ablank. Enter state g, to repeat the cycle.

5. &(qy,B)={(44, B, L)

TURING MACHINES 7.28

8gasly = (¢, B, 1)

6(¢4,0) = (94,0, 1)

5g4,0) = (46,0, R) _
Ifin state ¢, a B is encountered before a 0, we have situation (i) described above. Enter state
g.and move lefl, changing all 1'sto B 's until encountering a'B. This B ischanged back toa (),
state g, is entered, and M halts. |
6. - 6(g0.1) = (g5, B, R)

&(g5,0) = (g5, B, K)

8(gs,1) = (95, B, R)

_ 5(g5,B) = (g6, B, R)

Ifin state ¢, 2 1 is encountered instead of a 0, the first block of O's has been exhausted, asin
 situation (i) above. M enters state g, to erase the rest of the tape, then enters g, and halts.

Example 4 : Design a TM which computes the addition of two positive integers.

Solution : LetTM M =((Q, {0, 1, # }, 8,5) computes the addition of two positive integersm
and n. It means, the computed function f(m, n) defined as follows :

m+u{lf mnzl)
S mm) m{c (n=n=0)
1 on the tape separates both the numbers m and . Following values are possible form andn.
1. m=n=0 (#1#......istheinput),
2. m=0and n#0 { #10°% ... isthe input),
3. me0andn=0 (#0"14 - is the input), and
4. m=0 and n20 { #0™0"# ... s the input)

Several techniques are possible for designing of M, some are as follows :
{a) M appends (writes) m after n and erases the m from the left end.

(b) M writes 0in place of 1 and erases one zero from the right or left end . Thisis possiblein
case of n# 0 OF m =0 only. fm=0orn=01then 1 is replaced by #.

We use techniques (b) given above. M is shown in below figure.

7.30 FORMAL LANGUAGES AND AUTOMATA THEORY

1 is replaced by O
inadvance

0&(\ ' n=0
0.6, R ;
don Yoyl

%

6% 8 4L
(o)y 22

FIo

S

Binee, 1 is replaced by Gin
advance, so erase one Difn =0

FIGURE : TM for addition of two positive integers

7.5 RECURSIVELY ENUMERABLE LANGUAGES
AlangnageLoverthealphabet 5, iscallodrecursively ermerable ifthereisa TM Mithatacceptevery wond
inL and either rejects(crashes) or loops for every wordinlanguage L' thecomplement of L.

Accept (M) =L

Reject (M) + Loop M) =L’
When TM M is still running on some input (of recursively enumerable languages) we can never
tell whether M will eventually accept if we let it run for long time or M will run forever (in loop).

Example : Consider a language (a+b)*bb(a+b)*.

TM forthislanguageis, (@, 4, R) (o, 2, R)

(2 2,K)

FIGURE : Turing Machine for{a+b)*bb(a+b)*

Here the inputs are of three types.

1. All words with bb = accepts (M) as soon as TM sees two consecutive b's it halts.

2. Allstrings without bb butending in b =rejects (M). When TM sees a single b, it enters

' state2. If the string is ending with b, TM will halt at state 2 which is not accepting state.

Hence it is rejected. '

3. All strings without bb ending in ‘& or blank 'B'= loop (M) here when the TM sees lastait
enters state 1. In this state on blank symbol it loops forever.

TURING MACHINES 7.31

Recursive Language

Alanguage L over the alphabet ¥ is called recursive if there is a TM M that accepts every word
inLand rejectseverywordin L' L. e.,

accept (M) =1L
reject (M) =L/

loop (M) = 4.

Example :Consideralanguageb(a+b) ¥ . ltisrepresented by TM as :

FIGURE : Turing Machine forb(a+b)*

This TM acce;ﬁts all words begixming with o' because it enters halt state and it rejects all words
beginning with a because it remains in start state which is not accepting state.

A ianguage accepted bya TM s said to be recursively enumerable languages. The subclass of

recursively enumberable sets (. €) are those languages of this class are said to be recursive sets
or recursive language.

7.6 CHURCH'S HYPOTHESIS

According to church's hypothesis, all the fimctions which can be defined by human beings can be
cornputed by Turing machine. The Turing machine is believed to be ultimate computing machine.

The church's original staternent was slightly different because he gave his thesis before machines
were actually developed. He said that any machine that can do certain list of operations will be

able to perform all algorithms. TM can perform what church asked, so they are possibly the
" machines which church described,

Church tied both recursive functions and computable fimetions together. Every partial rectrsive
function is computable on TM. Computer models such asRAM also give rise to partial recursive
functions. So they can be simulated on TM which confirms the validity of churches hypothesis.

Important of church's hypothesis is as follows .

7.32 _ FORMAL LANGUAGES AND AUTOMATATHEORY

1. Firstwe will prove certain problems which cannot be solved using TM.

2. IHchurches thesis is true this implies that problems cannot be solved by any computer or any
programming languages we might every develop. '

3. Thusin studying the capabilities and Timitations ofTilring machines we are indeed studying
the fundamental capabilities and limitations of any computational device we might even
construct.

It provides a general principle for algorithmic computationand, while not provable, gives strong
evidence that no more powerful models can be found.

7.7 COUNTER MACHINE

Counter machine has the same structure as the multistack machine, but in place of each stack is

a counter. Counters hold any non negative integer, but we can only distinguish between zero and
NON 2810 CouNters.

- Counter machines are off - line Turing machines whose storage tapes are semi - infinite, and
whose tape alphabets contain only two symbols, Z and B (blank). Furthermore the symbol Z,
which serves as a bottom of stack marker, appears initially on the cell scanned by the tape head
and may never appear on any other cell. An integer i can be stored by moving the tape head i
cells to the right of Z. A stored number can be incremented or decremented by moving the tape
head rightor left. We cantest whether a number is zero by checking whether Z is scanned by the
head, but we cannot directly test whether two numbers are equal.

i Read-only Input $

zZi'plBi...!BlB|AL--

FIGURE : Counter Machine

TURING MAGHINES 7.33

¢ and § are customarily used for end markers on the input. Here Z is the non blank symbol on
each tape. An instantaneous description of a counter machine can be described by the state, the
input tape contents, the position of the input bead, and the distance of the storage heads from the
symbol Z (shown here as d, and d,). We call these distances the counts on the tapes. The
counter machine can only store a count an each tape and tell if that count is zero.

Power of Counter Machines

- Bverylanguage accepted by a counter Machine is recursively enumerable.
- Every language accepted by a one - counter machine is a CFL so a one - counter machine
is a special case of one - stack machinei. ¢, aPDA

7.8 TYPES OF TURING MACHINES

Various types of Turing Machines are :

i Withmultiple tapes.

il. Withonetapebut muktzpie heads.

. With two dimensional tapes.

iv. Nondeterministic Turing machines.
Ttis observed that computationally all these Turing Machines are equa}iy powerful. That means
one type can compute the same that other can. However, the efficiency of computation may
vary. :
4. Turing machine with ”fwo Way Infinite Tape
Thisis 2 T™ that have one finite control and one tape which exténds mﬁmteiy in both directions.

Input zg:ﬁ ?0 1 Accept/Reject
1 ' -
-------- HERRRERRERRN
' tape

FIGURE : TMwith infinite Tape

Tt turns out that this type of Turing machines are as powerﬁzi as one tape Turing machines whose
tape has a leftend.

7.34 FORMAL LANGUAGES AND AUTOMATATHEORY

2. Multiple Turing Machines :

Input Finite Accept/Reject
control
. F
wet _ p L1 1 11
ooz T T T 1 117
4
wes J VI 1T

FIGURE : Multiple Turing Machines

Amultiple Turing machine consists of a finite control with k tape heads and k tapes, each tape is
infinite in both directions. On a single move depending on the state of the finite control and the
symbol scanned by each of the tape heads, the machine can

1. Change state.

2. Printanew symbol on each of the cells scanned by its tape heads.

3. Moveeach ofits tape heads, independently, one cell to the leftor right orkeepit statzonary

Tnitially, the input appears on the first tape and the other tapes are blank.
3. Nondeterministic Tu ring Machines :

A nondeterministic Turing machine is a device with a finite control and a single, one way infinite
tape. For a given state and tape symbol scarmed by the tape head, the machine has a finite
number of choices for the next move, Each choice consists of a new state, a tape symbol to print,
and a direction of head motion. Note that the non deterministic TM is not permitted to make a
move in which the next state is selected from one choice, and the symbol printed and/ or direction
of head motion are selected from other choices. The non deterministic TM accepts its input if any
sequence of choices of moves leads to an accepting state.

As with the finite automaton, the addition of nondeterminism to the Turing machine does not
allow the device to accept new languages.

TURING MACHINES 7.36

4. Multidimensional Turing Machines : @

"~ 3.Himensional T™M

FIGURE : Multidimensional Turing Machine

The multidimensional Turing machine has the usual finite control, but the tape consists ofa
k - dimensional array of cells infinite in all 2k directions, for some fixed k. Depending on the state and
symbol scanned, the device changes state, prints a new symbol, and moves its tape head inone of 2k
directions, either positively or negatively, along one of the k axes. Initially, the input is along one axis, and
- the head is at the left end of the input.At any time, only a finite number of rows in any dimension

contains nonblank symbols, and these rows each have only a finite number of nonblank symbols
5. Muiltihead Turing Machines : ;

woput | e | AcCoRRIEH

cantrol

head 1 J ‘ hoad 1
nead2

‘ N
[TTITITITTIT]
1a

e

FIGURE : Multihead Turing Machine

Ak - head Turing machine has some fixed number, k, of heads. The heads are numbered 1 through
k, and a move of the TM depends on the state and on the symbol scanned by each head, In one

move, the heads may each move independently left, right or remain stationary. '
6. Off - Line Turing Machines : - '

Finite
Conwol

Gy T 1]
— 1]
O 2

n 1’"/T FT 1
FIGURE : Off - line Turing Machine

7.36 FORMAL LANGUAGES AND AUTOMATATHEORY

Anoff - line Turing machine is a multitape TM whose input tape is read - only. Usually we
surround the input by end markers, ¢ ontheleftand § onthe right. The Turing machine is not
allowed to move the input tape head off the région between ¢ and §

Off - line TM is just a special case of the multitape TM, and is no more powerful thanany ofthe
models we have considered. Conversely, an off - line TM can simulate any TM M by using one
more tape than M. The first thing the off - line TM does is copy its own input onto the extra tape,
and it then simulates M as if the extra tape were M's input.

7. - Multistack Machines :

A deterministic two - stack machine is a deterministic Turing machine with aread only input and
two storage tapes. If a head moves left on either tape, a blank is printed on that tape.

Multistack machine and counter machines are restricted Turing machines equivalent to the basic
model. : ' '

7.9 COMPARISON OF FM, PDA AND TM

Basically have discussed three models viz. finite automata or finite machines (FM), Pushdown

automata (PDA) and Turing machine (TM). We will now discuss the comparison between
these models, :

1. The finite machine is of two types - deterministic finite state machine and non deterministic
finite state machine. Both of these DA and NFA accept regular language only. Hence both
the machines have equal power i, . DFA = NFA.

2. Wehave then learn push down automata again, pushdown automata consists oftwo types of
models deterministic PDA and Non deterministic PDA. The advantage of PDA over FAis
that PDA has a memory and hence PDA accepts large class of languages than FA. Hence
PDA has more power than FA. The non deterministic PDA accepts the language of context
free grammar power of DPDA is less than NPDA as NPDA acceptsa larger class of CFL.

3. Theclass of two stack orn - stack PDA has more power than one stack DPDA or NPDA.,

- Hencetwo - stack / n - stack PDAS are more powerful.

4. Turing machines can be programmed. Hence TM accepts very very large class of languages.
TM™, therefore is the most powerful computational model.

TM > PDA > FM
TM accepts regular and non - regular languages ; context free and context sensitive languages as well,

TURING MACHINES 7.37

REVIEW QUESTIONS

Q1. Explain Turing machine ,
Answer :
For Answer refer to Topic: 7.2, PageNo: 7.1
Q2. Differentiate between TM and PDA.
Answer ;
For Answer refer to Topic: 7.2.5, .Page No : 7.6.
Q3. Obtain a Turing machine to acceptthe language £ = {0 "1" {nz 1} .
Answer ;

For Answer refer to example - 1 , Page No: 7.6.
Q4. Obtain a Turing machine to accept the fanguage L (M) = { 0" 1"2" [n2 1}
Answer :
For Answer refer to example - 2, Page No 1 7.11.
Q5. Obtaina TM to accept the language L ={w|w «(0+1)*} containing the substring 001.
Answer !
For Answer refer to example - 3, Page No : 7,14,

Q6. Obtaina Turing machine fo accept the language containing strings of 0O's
and 1's ending with 011.

Answer :

For Answer refer to example - 4 , Page No : 7.16.
Q7. Obtain a Turing machine to accept the language L ={ wiwis evenand L= {a, b} }
Answer :

For Answer refer to example - 5, Page No : 7.17,
8. Obtain a Turing machine to accept a palindrome consisting of a's and b's of any length.
Answer !

For Answer refer to example - 6, Page No : 719,

7.38 FORMAL LANGUAGES AND AUTOMATATHEGRY

Q9. Construct a Turing machine which accepts the language of aba over T=f{a,b}.
Answer @

For Answer refer to example - 7, Page No 1 7.22.
Q10. Design a TM that recognizes the set L= {0"1"[n 2 0} .

Answer :
For Answer refer to example - 8, Page No 1 7.23.
Q11. Design Turing machine to recognize the palindromes of digits { 0, 1} . Give its state transition
diagram also.
Answer :

For Answer refer to example - 9, Page No : 7.24.
Q12. Design a Turing machine that accepts L = {a"b"|n= 0} .

Answer ;

For Answet refer to example - 10, Page No : 7.25.
(Q13. What does the Turing Machine described by the 5 - tuples,

(QG 505 '519 915 R)S(Ql} 911 Q1 30: r)s(qo 339 gz 383 R) v
(9,50,g,,0, R), (g,,1.9,,L R) and {(g,,8.4,,B,R)}. Do when given a bit string

asinput ?
Answer :

For Answer refer to example - 11, Page No : 7.26.
Q14. Write a short nofes on computable functions,
Answer :
For Answer refer to Topic : 7.4, Page No 1 7.26.
Q15. Construet Turing machine to find proper subtraction m - n is defined to be m.-n for
m>n and zero form<n.
Answer :
For Answer refer to example - 3, Page No 1 7.28.
(Q16. Design a TM which computes the addition of two positive integers.
Answer :
For Answer refer to example - 4, Page No : 7.29.

TURING MACHINES 7.39

Q17. Write about recursively Enumetable Languages .

Answer :

For Answer refer to Topic : 7.5, Page No : 7.30.
Q18. Explain about church’s Hypothesis.

Answer ;

For Answer refer to Topic: 7.6, Page No: 7.31.
Q19. Explain about counter machine with a neat diagram.
Answer :

For Answer refer to Topic : 7.7, Page No : 7.32.
Q20. List and explain various types of Turing Machines.
Answer : |

For Answer refer to Topic : 7.8, Page No ; 7.33.

7. 40

FORMAL LANGUAGES AND AUTOMATA THECRY

OBJECTIVE TYPE QUESTIONS

The no.of symbols necessary to simulate any TM with m symbols & » statesis
(@) dmn+m (b) mn (¢) 8mp+4m (d) m+n
Find the false statement. |

(a) Turing machine is simple mathematical model of general purpose computer.

(b) Turing machine is not capable to performing any caleulation which can be performed
by computer

(¢) We construct Turing machine to accept a given language

(d) We construct Turing machine to carry out some algorithm

Which of the following classes of Turing machine is not equivalent fo the class of standard
Turing machine?

(a) Non-deterministic Turing machines

{(b) Turing machines with stay option

{¢) Turing machines with semi-infinite tapes

(dy All ofthese '

Choose the correct statements

(a) Every recursive language is recursively enumerable

(b) Lia"p" ™y isrecursively enumerable

_{c)Recursive languages are closed under union

(Al

A TM is more powerful than Finite state machine because

{a) it has the capability to remember arbitrary long input symbols

(b) tape movement is confined 1o one direction

{c) it has no finite state control

{(dynone

An Finite state machine can be considered tobe a TM

(a) a finite tape length, rewinding capability and bi-directional tape movement.
(b) a finite tape length, without rewinding and bi-directional moverment

(¢) a finite tape length, without rewinding capability and unidirectional tape movement
(d) afinite tape length, with rewinding and unidirectional movement

TURING MACHINES 7.41

7. Tuing machines can move how in memory?

{(a) It cannot move. (b) forward and backward
- (¢) backward (d) forward
8. Turing machines use what as their memory?
(a) infinite tape (b) finite tape
{c)RAM {(HROM
9. Turing machines can domseeemems '

(a) less than areal computer can do
{b) everything that areal computer cando
{c) morethan areal computer can do. |
{d) Nothing
10. Turing machines are similar to finite automaton but have —wmr--
(a) unlimited and read-write rhemgry
(b) finite and read-write memory
{c) unlimited and read-only memory
(d) finite and read-only memory.
11, Comparing TM and computers we find
(a) They cannot be compared
{b) Both are Equivalent
(¢) T™M have more computational power
{d) Computers have more computational power
12, Theclass of TMs is equivalent to the class of

(a) Type 3 Grammars {(b) Type 2 Grammars
{c) Type 1 Grammars (&) Type 0 Grammars
13. Theclass of unrestricted languages corresponds to
(a) FA (b)PDA {c)L.BA (dyT™
14, Any TM with m symbols &n states can be simulated by another TM with just 2
symbols & less than

{a) mn states (b) 8mn+4 states {c) 4mn+8 states (d) 8mn states

7.42

FORMAL LANGUAGES AND AUTOMATA THEORY -

13

16.

17.

18,

19.

20.

Which statement is false?
(d) Turing machine is simple mathematical model of general purpose cornputer.

(¢) Turing machine is not capable of performing any calculation which can be performed
by computer

(b) We construct Turing machine to accepta given language

(2) we construct Turing machine to carry out some al gorithm

By giving Turing machine more complex power we can increase the power of the Turing
Machine '

(a) Absolutely False (b} Maynotbe True

(c) May be True (d) Absolutely True

The definition of Turing machines is robust because.....

(a) Turing machine has nothing to do with robustoess.

(b) certain changes (such as many tapes) result in machines of equivalent power.

(¢) turing machines will not crash for any input string.

(d) functional testing of turing machines finds no errors.

A Turing machine computes by going from one configuration to another. We say that
configuration ¢ yields configuration C; if the Turing Machine can legally move from

(a) an infinite number of steps
(b) asingle step

(c) a finite number of steps

{d) none of the above

In a Turing machine for a stafe q and two strings « and v over the tape alphabet writing
'uge’, specifies that the current state i8 g----—-

(a) the tape contents are uv, and the current head location is the first symbol of v.

(b) the tape contents are uv , and the current head location is the first symbol ofu.

{¢) the tape contents are #gv, and the current head location is the first symbolof v.

(d) The tape contents are ugv, and the current head location is the first symbol of u.
Turing machines output accept if they enter an accept state. When do Turing machine
output reject? : '

(a) Never

(b) When they enter a reject state

(c) When they never end

(d) When they are not in an accept state and halts

TURING MACHINES 7.43

21, Considerthe Turing Machine M described the transition table.

Present Tape Symbols

State 3 | X y b

9 XRy2 - bRys
2 0bR,, g3 - xRy

4 0L,4 - XRys xRz

4 0Lyq : Xqu

qs XRys | DRys
ds |

g5 isthe final state.

Refer to the Turing Machine whose transition diagram is given above. What is the final ID
when string 011 is processed?

(a) xygs1 (b) xygeyx (©) wyybgs - (D) xygs1
22. Consider the transition table of a Turing machine ;
Present State Tape symbols
b 0 1
@ Ly, | ORy
g2 bRy3 | 0Ly o
@ bR bR,s
a4 ORys ORps | 1Rpy
qs 0Lgs
gs isthe final state.
Computation sequence of string 00 leads to?
(@Emor (b) bbbb,50000 (c) bbb,5000 (d) bb,500

23. The grammar generated by production rules $ > aSBc|abe, ¢B—> Be, aB > aa is
(@) a"p"" ns 0 (b) a™"c",n>0

() "B nz0 Ad) g™ w1

FORMAL LANGUAGES AND AUTOMATA THEORY

24.

23,

26.

27.

28.

29.

30.

3L

The grammar generated by production rules § -» 4| Se, 4> abjadb is
(@) AW 020 and ¢>0 (B) &' n>0 ande>0

{C) &' 120 and c 20 (d) &b ,n>0 andc20

Consider a new type of turing machine where the head can move left and move right but
cannot stay put. This new type of turing machine is.........

(2) not comparable.

(b) More powerful than the original Turing mahcine
() equivalent in power to the original Turing machine
(d) less powerful than the original Toring maheine

The statement "Standard TM accepts the same languages as are accepted by a stay ™"
is

(a) Always false. (b) True for all languages
(¢) True only if Tanguages is regular (d) True only if languages isa CFL.
Find the false statement

(a)Standard TM is equivalent to linear bounded automata

(b) Standard Turing machine(TM) is equivalent to nulti tape TM

(¢) Standard TM is equivalent to non deterninistic TM
{d)None

Which of the foliomng is true: Read Write head canmove
(a) to the left of right endmarker n LBA

(b} to the right of right endmarker in LBA

(c)to the right of left endmarker mn LBA

(dito the left of Teft endmarker n LBA

LBA s

(a) restricted T.M. from both sides () unrestricted T.M.

(c) restricted T.M. from one side {d)none

Which automata is associated with Context Sensitive Language? (Give the best answer)
(a) Linear Bounded Automata (b) Pushdown Automata '

() Finite Automata (d) Turing Machine

Refer to the Turing Machine whose transition diagram as given above in question 21,
What is the final D when string 0011 is processed?

(a) xygsl (b) xygeyx (€} xxyybgs {d) xvgel

TURING MACHINES

7.45
~ 32. Which ofthe following is not a variant of the standard Turing Mahine
{a) Universal Turing Machine {b) Linear Bounded Automata
{c) Pushdown Automata {d) None of the above.
33. LetBbealinear bounded automata. Then grammar corresponding to L(B) is
(a) Regular grammar (b) Unrestricted grammar
{¢) Contextfree language {d) Context sensitive language
34. TheLinear bounded automata is a variant of
{#) Finite Automata {b) Turing Machine
(¢} Pushdown Automata {(d) None of these
35. Non-Deterministic Turing Machines are more powerfill than deterministic Turing Machine
(a) Absolutely False (b} May notbe True
{c) May be True (d) Abschrtely Troe
36. ‘Many models of general purpose computation exist. Some are very similar to the original

Turing machine, others can be very different than the original.
All of these models are equivalent in power if....
(a) there is no model if everything is equivalent to evexyt‘m ng elsel

(b) they have unrestricted access to unlimited mermory, and satisfy certain reasonable
requirements like performing only a finite amount of work in a single step.

(c) satisfy certain reasonable requirements like performing only a finite amount of work in
a single step.

{d) they have unrestricted access to unlimited memory.

ANSWER KEY

LB 26 3 40) 5@ 6 7T(a) 8 9 10.0)
1) 124d) 13.0) 1408) 15(d)16.) 17.0) 18.4a) 19.4d) 20.b)
21.(b) 22.(b) 23.(5) 24.b) 25.ac)26.(b) 27.(a) 28(a,c) 29.(a) 30.(a)
31(b) 32.(¢)33d) 34(b) 35.(8) 36.b)

FORMAL LANGUAGES & AUTOMATA THEORY

UNIT- VI
COMPUTABILITY

8

COMPUTABILITY THEORY

After going through this chapter, you should be able to understand :

o Chomsky hierarchy of Languages

« Linear Bounded Automata and CSLs
o LR{0)Grammar

« Decidability of problems

o HTMand PCP

e P and NP problems

8.1 CHOMSKY HIERARCHY OF LANGUAGES

Chomsky has classified all grammars in four categories (type 0 to type 3) based on the right
hand side forms of the productions.

{a) Type O

These types of grammars are also known as phrase structured grammars, and RHS ofthese are
free from any restriction. All grammars are type 0 grammars.

Example : productions of types 4S — aS, B — 85,8 —e are type 0 production.
(b} Type 1

We apply some restrictions on type 0 grammars and these restricted grammars are known as
type 1 or context - sensitive grammars (CSGs). Suppose a type 0 production yad —» yf5

and the production & —» £ is restricted such that | o{<| fland S#<. Then these type of

productions is knownas type 1 production. if all productions of a grammar are oftype 1 production,
then grammar is known as type 1 grammar, The language generated by a context - sensitive
grammar is called context - sensitive language (CSL).

8.2 FORMAL LANGUAGES AND AUTOMATA THEGRY

In CSG, there is left context or right context or both. For example, consider the production

oA B> caff . Inthis, ¢ isleftcontextand g isright contextofAand A is the varigble which is
replaced. ' '

The production of type § - « isallowed intype 1if eisin1(G), but S should not appear on
right hand side of any production.

Example : productions § — 4B, —» €,4 — ¢ aretype | productions, but the production
oftype A -» S¢ isnotallowed . Almost every language can be thought as CSL.

Note : If left or right context is missing then we assume that & is the context.
(c) Type 2

We apply some more restrictions on RHS of type 1 productions and these productions are
known as type 2 or context - free productions. A production of the form a— 8, where

o, B eV UI)* is known as type 2 production. A grammar whose productions ate type 2
production is known as type 2 or context - free grammar (CFG) and the languages generated by

this type of grammars is called context - free languages (CFL).
Example : §->8+8,5->S*S, §-»id are type 2 productions.

(d) Type3

Thisis the most restricted type. Productions of types 4> g or 4 —> aB{Ba ,where 4, BeV

and a e 5 are known as type 3 or regular grammar productions. A production of type § — ¢ is
also allowed, if isin generated language.

Example : productions §—> a8, S—» ¢ aretype 3 productions.
Left - linear production : Aproductionoftype 4> Ba iscalled left - linear production.
Right-linear production : Aproductionoftype 4 — aB is called right - inear production.

Aleft - linear or right - linear grammar is called regular grammar. The language generated bya
regular grammar is known as regular language.

COMPUTABILITY THEORY 8.3

Aproductionoftype 4> w O 4~>wB OF 4—> Bw ,where w e £* canbe converted into
the forms 4 -» g OF 4—»gB OF 4> Ba,whered,BeV and s 5.

Example : 4> 10A canbereplaced by productions 4> 18, where B is a new variable
and B->04.

In general, if 4-> aa;....... a,a,, B, then this production can replaced by the following
productions.

A-»a; By,
B —a, B,

B, —>a; B;,

Bn ¥ Gy B
Similar result is obtained for left - linear graramars also.

8.1.1 Hierarchy of grammars

Type 0 or Phrase structured grammar

U Restrictions applied
Type 1 or Context - sensitive grammar

4 Restrictions applied
Type 2 or Context - free grammar

g Restrictions applied
Type 3 or Regular grammar

Example : Considerthe following and find the type of the grammar.
(a} $—> Aa, A-—>c|Ba, B> gbe
(b} S§->aSaic
(¢) S—> aAS | SBb, AS —> adS|aS, SB -> Sh|SBb

8.4 FORMAL LANGUAGES ANDAUTOMATATHEORY

Solution :
{a) Production Type
S -> Aa Type 3
A - ¢ Type 3
A -y Ba Type 3
B —y abe Type 3
So, given productions are of type 3 and hence grammar is regular.
(b) '
S iy aSa Type 2
S Y c Type 3

So, given productions are of type 2 and hence grammar is CFG.
Note : We select the higher type and higher type between type 3 and type 2 istype 2).

{©) S - aAS Type 2
S ~> SBb Type 2
AS - aAS ' Type 1
AS —> as ' Type 1
SB - Sb Type 1
SB - SBb Type 1

So, given productions are of type 1 and hence grammar is CSG.
8.1.2 Relation Among Grammars and Languages

Type 0 is the super set and type 1 is contained in type 0, type 2 is contained in type 1, and
type 3 is contained in type 2.

Type 0 Type L Type 2¢ Type3
8.1.3 Languages and Their Related Automaton

Turing Machines

Linear Bownded Autamaton

Poshdown Antemosten

P Pinite A ton

FIGIURE : l.anguages and their related Automaton

COMPUTABILITY THECORY 8.5

8.2 LINEAR BOUNDED AUTOMATA

" The Linear Bounded Automata (LBA) is a model which was originally developed as a model for
actual computers rather than modet for computational process. A linear bounded automatonisa
- testricted form of a non deterministic Turing machine.

Alinear bounded automatonis a multitrack Turing machine which has only one tape and thistape
is exactly of same length as that of input.

The linear bounded automaton (LBA) accepts the string in the similar manner as that of Turing
machitie doos. For LBA halting means accepting. In LBA computation is restricted foan area
bounded by length of the input. This is very much similarto programming environment where size
of variable is bounded by its data type.

<} a|ajalb b bl >

5

Leftend Rightend
marker marker

Finite
control

FIGURE : Linear bounded aufomaton

The LBA is powerful than NPDA but less powerful than Turing machine. The input is placed on
the input tape with beginning and end markers. In the above figure the input is bounded
by < and >. '

A linear bounded automata can be formally defined as

LBA is 7 - tuple on deterministic Turing machine with
M=(Q, %, T,8, 4o Qaccen» Troject) having
Two extra symbols of left end marker and right end marker which are notelementsof 1.
2. Theinput Ties between these end markers. _
3. The TM cannot replace < or > with anything else nor move the tape head left of <or
rightof >.

oy
M

8.6 FORMAL LANGUAGES ANDAUTOMATA THEQRY

Example : We canconstruct alanguage [= {o" " ¢"|{n =1} using LBAas follows.

< a ai b b ¢ ™ >

d

Finite
control

The input is placed on the input tape which is enclosed within left end marker and right end
marker. We will apply the simple logic as : when we read 'a’ convertit to A then move right by
skipping all a's. On encountering first b we will convert it to B. Then moveright by skipping all
b's. Onreceiving first ¢ convertitto C. Move in left direction unless you get A. Repeat the above
procedure and convert equal number of a's, b's, and ¢'s to corresponding A's, B's and C's.
Finally move completely to the rightmost symbol if it is ™' a right end marker,then HALT. The
machine willbe:

{B.8.F}
(CCRY
®BR) _ ErY e
&/ D,
©aR) boL
LX) {bb,R} CoL
@(<,<,a) o AR @{bﬁ,ﬂ) éé{cm.)“ o
(A. A, R)
Simuiation : Consider input aabbee
< aabbee > Move right.
t
< aabbee > Convertto A, moveright.
?
< Aabbee > Moveright.
)l o
< Aabbee > Convertto B, moveright.
T
< AaBbec > Moveright.

T

COMPUTABILITY THEORY

8.7

< AaBbee >
0
<AaBbCc >
T
< AaBbCe >
T
< AaBbCe >
1
< AaBbCc >
T
< AaBbCc >

0
<AABBCc >

t
<AABbCc>

T
<AABBCc>

T
<AABBCc>

1\
<AABBCC>

T
<AABBCC>

1
<AABBCC>

0

<AABBCC>
T

Convert to C, move lefl,
Move left

Move left.

| Move ledl,

Move right.

Convertto A, Move right.

Moveright.

Convert to B, Move right.

Moveright.

Convert to C, Move left.

Move left continuously by skipping B's.
Moveright.

Ifwe get B, we will move right fo check whether
all b's and ¢'s are converted to Band C.

If we get right end marker > then we HALT by
accepting the input aabbec.

Thus in LBA the length of tape exactly equal to the input string and tape head cannot move left
of '<right of >,

88 FORMAL LANGUAGES AND AUTOMATA THEORY

8.3 CONTEXT SENSITIVE LANGUAGES (CSLs)

The context sensitive languages are the languages which are accepted by linear bounded axtomata.
These type of languages are defined by context sensitive grammar. In this grammar more than
one terminal or non terminal symbol may appear on the left hand side of the production rule.
Along with it, the context sensitive grammar follows following rules:

i, The number of symbols on the left hand side must not exceed number of symbols on the
right hand side.

i, Therule oftheform 4 —e isnotallowed unless A is a start symbol. It does not occur
on the right hand side of any rule.

The classic example of context sensitive languageis L = {a" " ¢" | n 2 1} . Thecontext sensitive
grammar can be written as

S - aBC

S i SABC
CA -3 AC
BA AB
CB - BC
aA N aa

aBB —> ab

bB - bb

bC - be

cC -3 ce

Now to derive the string aabbce we will start from start symbol :

S ruleS SARBC
SABC eSS —» aBC
aBCABC rule CA — AC
aBACBC _ rule CB - BC
aBABCC rule BA - AB
aABBCC ruleaA - aa
aaBBCC raleaB -» ab
aahBCC rule bB — bb
aabbCC rule bC — be
aabbeC ruecC — ce

aabbee

COMPUTABILITY THEORY

Note : The language " »" ¢" where 5 » 1 isrepresented by context sensitive grammar but it

cannot berepresented by context free grammar.

Every context sensifive language can be represented by LBA.

8.4 LR (k) GRAMMARS

Before going to the topic of LR (k) grammar, let us discuss about some concepts which will be

helpful understanding it,

[n the unit of context free grammars you have seen that to check whether a particular string is
accepted by a particular grammar or not we try to derive that sentence using rightmost derivation
or lefimost derivation. If that siring is derived we say that it is a valid string.

Example :

E->E+T|T
T—>T*F| F
F>id | (E)

Suppose we want to check validity of a string id +id * id . Itsrightmost derivation is

E =

R (R R

FIGURE(a) . Rightmost Derivation of id + id * id

Since this sentence is derivable using the given grammar. itis a valid string. Here we have checked

Es+T

E+T*F
E+T*id
E+ F*id
E+id*id
T+id *id

F+id*id

id + id ¥id

the validity of string using process known as derivation.

8.10 FORMAL LANGUAGES AND AUTOMATA THEORY

The validity of a sentence can be checked using reverse process known as reduction. In this
method for a given x, inorder to know whether it is valid sentence of a grammar or not, we start
with x and replace a substring x; with variable Aif 4 X, isa production. We repeat this
process until we get starting state.

Consider the grammar,

E-» E+T\|T
E-— T*F|F
F - (E)| id

Letus check the validity of string id +id * id.

F+id * id Replaced F withid since F — idisa production
T +id * id Replaced F with T using production T > F

E +id * id Replaced T with E using productionE —> T
E+T * id Replaced id with F using production ¥ — id

E+ T * id Replaced F with using production T — F

E +T* F Replaced id with F using production F — id
E+T Replaced T * F with T using production T - T *F
E Replaced E + T with E using production E - E+T

FIGURE(b): Reductionofid+id*id

Here since we are able to reduce to starting state E, so that id +id * id is accepted by the given
granymar. - :

Note : There may bedifferent ways of selecting as substring in sentential form. In our reduction
we have used reverse of rightmost derivation shown in Figure(a).

The substring in right sentential form which causes reduction to starting state is known as handle
and corresponding production is known as handle production. For example, intight sentential
form E +T * id of Figure(b) we can either replace substring T with Fusing T ->F or replace
id with Fusing F > id. If we use the first reduction, the sentential form will become E+F *id.
This will not lead to starting state. Hence here F is not handle. Where as if we reduce, the
sentential form will be E-+T * F which can be reduced to starting state using subsequent reductions.
ence here Fisahandleand F > idis handle production.

COMPUTABILITY THEORY ' 8. 41

In reduction process we have seen that we repeat the process of substitution until we get starting
state. But some times several choices may be available for replacement. In this case we have to
backtrack and try some other substring . For certain grammiars it is possible to carry out the
process in deterministic. (i. e., having only one choice at each time). LR grammars form one
such subclass of context free grammars, Depending on the number of look ahead symbolized to
determine whether a substring must be replaced by a non terminal or not, they are classified as
LR(0), LR(}).... and in general LR(k) grammars.

LR(k) stands for left to right scanning of input string using rightmost derivation in reverse
order (we say reverse order because we use reduction which is reverse of derivation) using
look ahead of k symbols.

8.4.1 LR(0) Grammar

LR(0) stands for left to right scanning of input string using rightmost derivation in reverse order
using 0 look ahead symbols. '

Before defining LR(0) grammars, let us know about few terms.

Prefix Property ; Alanguage L is said to have prefix property if whenever w in L, no proper
prefix of wis in L. By introducing marker symbol we can convert any DCFL to DCFL with prefix

property. Hence L$ = { w§|w e L} isa DCFL with prefix property whenever wis inL.

Example : Consider a language L= { cat, cart, bat, art, car } . Here, we can see that sentence
cartis in L and its one of the prefixes car is also is in L. Hence, it is not satisfying property. But
L$ ={cat$, cart$ bat$ art§,car$}

Here, cart § is in L$ but its prefix cart or car are not present in L$. Similarly no proper prefix is
present in L. Hence, it is satisfying prefix property.

Note : LR(0) grammar generates DCFL and every DCFL with prefix property has a LR(0)
gramInar.

LR items

Anitem fora CFG is a production with dot any where in right side including beginning orend. In
case of ¢ production, suppose 4—» € 4->. isanitem.

8.12 FORMAL LANGUAGES AND AUTOMATA THEORY

Example :

Consider the grammat,
§-> §
S cAd

A—> ale

The items for this grammar are,
St .8

- S
S > .cAd
S—> ¢.Ad
S-> cdd
S cdd.
A—> .
4> a

A .
Anitem indicates how much of a production we have seen ata given pointin Parsing process.

Valid tem : Wesayinitem 4 - o . § is valid fora viable prefix (i. ¢., most possible prefix)

v there is arightmost derivation § = édw = JafBwand Sa=y.
r m

Example :

S — cdr

A = ar
The sentence cart belongs to this grammar,
S#m CAt = cart

The possible or viable prefixes for cart are { c; ca, car, cart } forthe prefixca 4 > a.r. isvaiid
jtem and for viable prefix car 4 = ar isvaliditem.

COMPUTABILITY THEORY 8.13

Computing Valid ltem Sets

The main idea here is to construct from a given grammar a deterministic finite automata to recognize
viable prefixes. We group items fogether into sets which give to states of DFA. The items may be
viewed as states of NFA and grouped items may be viewed as states of DFA obtained using
subset construction algorithm.

To compute valid set of items we use two operations goto and closure.
Closure Operation

Tt 1is a set of items for a grammar G then closure () is the set of items constructed from I by two
rules. : '
1. Initially, every item 1is added to closure (1),
2. ¥ 4->a.Bp isinclosure (and g § isproductionthenadditem g § tol,ifitis
not already there. We apply this rule until no more new items can be added to closure (I).

Example : Forthe grammar,

§ - 8
S ->» cdd
4 —» g

S -> § issetofoneiteminstate Ithenclosure of Tis,
L 8 - .8
S — .c4dD

The first item is added using rule 1and § > .c4d is added using rule 2. Because *. 'is

followed by nonterminal S we add items having SinLHS.In § - .c4d '."isfollowed by
terminal s0 1o new ifem is added.

Goto Function : It is written as goto { I, X) where L is set of items and X is grammar symbol.

If 4 ->a.Xf3 isinsomeitem set Ithen goto (1, X) will be closwre of set of all item 4 —» a.X B.

8. 14 FORMAL LANGUAGES AND AUTOMATATHEQORY

For example,
gow {1}, ¢)
closure (S -»¢. 4d)
i.e., S-»c.dd
A-—>» a

now let us see how all the valid sets of items are computed for the given grammar inexample 1.

Initially 7, will be the starting state. It contains only the item S»>. § we find its closure to find set
of items in this state for cach state 7, and symbol g after’.” we apply goto (1, B), goto (/,, 5}

and find its closure. This constitutes next state 7, . We continue this process goto (/,,q) untilne
new states are obtained.

Ip: 8T .8

S > .Ad
L:§8— 8
It 8-> cdd

A a
goio (Z,, 4A)

I: S—>cdd
goto (1, a)

;i Ad-—ra
goto {1,,d)

Is: §->cdd.

This process is stopped because all possible complete items are obtained. A complete item s the
one which has dot in rightmost position.

Ecahitem set corresponds to a state of DFA. Hence, the DFA for given grammar will have six
states correspondingto 7, o Is.

COMPUTABILITY THEORY 8.15

DFA:

S-rohd-
|

FIGURE(a) : DFA whose States are the Sets of Valid ltems

Definition of LR(0) Grammar : We say G is an LR (0) grammar if,

1. Itsstart symbol does not appear on the right hand side of any production and

2. Foreveryviable prefix 7 of G whenever 4 —» « is a complete item valid for 7, thenno
other complete item nor any item with terminal to the right of the dotis valid for 7 . _

Condition 1 : For a grammar to be LR(0) it should satisfy both the conditions. The first

condition can be made to satisfy by all grammars by introduction of anew production §'-> § s

known augmented grammar.

Condition 2 : For the DFA shown in Figure(a), the second condition is also satisfied because

inthe item sets 1,, I, and J; each containinga complete item, there areno other complete items

nor any other conflict.

Example : Consider the DFA given in figure(b).

FIGURE(b) : DFA for the given Grammar

8. 16 FORMAL LANGUAGES AND AUTOMATATHEORY

DFA for grammar,

S—>»L=R
§> R
L -»*R
L > id
R L

i The first condition of LR(0) grammar is satisfied.

i Considerstate 7, and viable prefixes of L=R { L, L=and L=R } forprefix IR —» L.

is a complete item and there is another item having the prefixLie,8 - L.=R
foliowed by terminal. Hence, violating second rule. So it isnot LR(0) grammar.

8.5 DECIDABILITY OF PROBLEMS

In our general life, we have several problems and some of these have solution also, but some
have not. Simply, we say a problem is decidable if there is a solution otherwise undecidable.

Example : consider following problems and their possible answers.

1. Does the sun rise in the east 7 (YES)

2. Does the earth move around the sun 7 (YES)

3. What is your name ? (FLAT)

4. Will tomorrow be a rainy day 7 (No answer)
We have solutions (answers) for all problems except the last. We can notanswer the last problem,
because we have no way to tell about the weather of tomorrow, but to some extent we can only
predict. So, the last problem is undecidable and remaining problems are decidable.

So, if a problem can be solved or answered based on some algorithm then it is decidable otherwise

undecidable. :
Problem

Selution - No solution

L

Decidable Undecidable

COMPUTARILITY THEORY . 8.17

Tach problem P is a pair consisting of asetand a question, where the question canbe applied to
each element in the set. The set is catled the domain of the problem, and its elements are called
the instances of the problem.

Example :

Domain = { All regular languages over some alphabet 3. },
Instance : L={w:wisawordover g endinginabb},
Question : Is union of two regular languages regular ?

851 Decidable and Undecidable Problems

A problem is said to be decidable if
1. ¥slanguage is recursive, Of
2. Ithas solution

Other probiems which do not satisfy the above are undecidable. We restrict the answer of
decidable problemsto " YES" or "NO" . I there is some algorithm exists for the problem, then
outcome of the algorithm is either "YES" or "NO but not both. Restricting the answers to only
"YES" or "NO" we may not be able to cover the whole problems, still we cancovera lotof
problems. One question here. Why weare restricting our answers to only "VES" or "NO"? The
answer is very simple ; we want the answers as simple as possible. '

Now, we say " If for a problem, there exists an algorithm which tells that the answer is either
“YES" or "NO" then problem is decidable."

. if for a problem both the answers are possible ; some times "YES" and sometimes "NO",
then problem is undecidable.

8.5.2 Decidabie Problems for FA, Regular Grammars and Regular Languages

Some decidable problems are mentioned below :

1. Does FAacceptregular language ?

2. Isthe power of NFA and DFA same ?

3. 7, and I, are two regular languages. Are these closed under following :
(@ Union
(o) Concatenation
{c) Intersection
(d) Complement

8.18 FORMAL LANGUAGES AND AUTOMATATHEQRY

©) Transpose
iy Kleene Closure (positive transitive closure)
For a given FA M and string w over alphabet 5, is w e L{ M) ? This is decidable problem.
ForagivenFM, is L(M) = ¢ ? Thisis adecidable problem.
For a given FAM and alphabet 5 ,is L(M)= £ *? Thisis a decidable problem.
For given two FA M, and M,, L(M)), L(M,) € S*,is L(M)= L(M;)? Thisis a
decidable problem, ' .
8. For given two regular languages I, and L, over some alphabet 5 ,is L, <1, ? Thisisa
decidable problem.

N o R

8.5.3 Decidable And Undecidable Problems About CFlLs, And CFGs

Pecidable Problems

Some decidable problems about CFLs and CFGsare given below.

If 7, and L, are two CFLs over some alphabet 3, then L, w L, is CFL.

If £, and L, are two CFLs over some alphabet 3, then L, £, isCFL.

IfLis a CFL over some alphabet v, then L*isa CFL.

If L, is aregular language, I, isa CFL then L, w1, isCFL.

If I, isaregular language, L, isa CFL over some alphabet ¥, then L,nL, isCFL.
Foragiven CFG G is L{(G) = ¢ ornot?

For a given CFQG G, finding whether L(G) is finite or not, is decidable.

For a given CFG G and astring wover 3, checking whether w ¢ Z(G) ornotisdecidable. '

e A Ul

Undécidabie Problems

Following are some undecidable problems about CFGsand CFLs .

1. Fortwo given CFLs I, and L,, whether I, n [, is CFL or not, isundecidable.

2. Foragiven CFL L over some alphabet 5, , whether complement of Li.e. E* -LisCFL or
' not, is undecidable.
3. Foragiven CFG G, is L(G) ambiguous ? This is undecidable problem.

4, Fortwo arbitrary CFGs G, and G, , deciding L(G,) r L(G,) = ¢ ornot, is undecidable.
S. For two arbitrary CFGs G, and G, , deciding L(G,) ¢ L{G,) ornot, is undecidable.

COMPUTABILITY THEORY 8.18%

8.5.4 Decidability and Undecidability About TM

We have considered TM as a most powerful machine that can compute anything, which can
recognize any language. So, from where undecidability comes and why 7 These questions are
really interesting, According to Church - Turing Thesis, we have considered TM as an algorithm
and an algorithm as a TM . So, for a problem, if there is an algorithm (solution to find answer)
then problem is decidable and TM can solve that problem. We have several problems related to
computation and recognization that have no solution and these problems are undecidable.

Partial Decidable and Decidable Probiems

A TM M is said to partially solve a given problem P if it provides the answer for each
instance of the problem and the problem is said to be partially solvable. If all the computations of
the TM are halting computations for P, then the problem Pis said to solvable.

A TM s said to partially decide a problem ifthe following two conditions are satisfied,
(a) The problem is a decision problem, and
(b) The TM accepts a given input if and only if the problem has an answer "YES" forthe
input, that is the TM accepts the language L= {x:xisaninstance ofthe problem, and
the problem has the answer "YES" forx }.

A'TM is said to decide a problem if it partially decides the problem and all its computations
are halting computations. . _

The main difference betweena TM M, that partially solves (partially decides) a problem
and aTM M, that solves { decides) the same problem is that M, mightrejectan inputbya
non - halting computation, whereas M, can reject the input only by 2 halting computation.

A problem is said to be unsolvable if no algorithm can solve it, and a problem is said to be
undecidable if it is a decision problem and no algorithm can decide it.

Decidable Problems about Recursive and Recursive Enumerable Languages

As we have discussed earlier that if a problem has a solution then it is decidable. In this section,
we will discuss some decidable problems about recursive and recursive enumerable languages.

1. The complement of a recursive language L. over some alphabet y isrecursive.

Proof : We will discuss aconstructive algorithim to prove that complement of arecursive language
is also recursive i. e. recursive languages are closed under complementation.

Aswe know that for all strings w « 7., 8 TM always halts and rejects those strings thatare -
notinl. So, " forall strings w ¢ 7, " is always decidable.

8.20 FORMAL LANGUAGES AND AUTOMATA THEORY

We construct a TM M, which recognizes the language L. We construct another TM M based on
M such that M" accepts those strings which aze rejected by M. It means, ifMacceptsthen M'
does not. M’ rejects those strings that arc accepted by M. It means, all strings x ¢ are
accepted by M and for all strings w ¢ L ar¢ rejected . So, M also follows same kind of algorithm
_ ' to decide whether a string 1 « £, ornot. Hence, complement of recursive languageLie Z*-L
is also recursive. The logic diagram of M' is shown in Figure(a).

_ o1 Accept e Rejocl
.) ot AgCEDY

Reject

—

3 _ By A

Figure{a)
~ In general, recursive languages are closed under complement operation.

2. The union of two recursive languages is recursive.

Proof: Let Z, and L, be two recursive languages and Turing machines M, and M, recognize
1, and L, respectively shown in Figure(b) and Figare(c).

YES YES
mff}.i.._.. M, < _wﬁ_.p _Ma <
NG

NG
Figure{b) Figure{c)
We construct a third TM A, , which followseither A, or M, asshown in figure(d).
YES
M, > ¥ YES
W NO
" | YBS
My ” » NO
NO

Figure(d)

COMPUTABILITY THEORY 8. 21

TM M, accepts if either M, acceptsor M, accepts and rejects if either M, rejects or M,
rejects . Since, M, and M, are based on algorithms, so M; isalso based on the same kind of

algorithm. Therefore, union of two recursive languages L, and L, tsalsorecursive. In general,
recursive languages are closed under union operation.

3. Alanguage is recursive if and only ifits complementis recursive.
4. The union oftwo recursively enumerable languages is recursive enumerable.

Proof : Let I, and L, be two recursively enumerable languages and recognized by M, and
A, Turing machines, We construct another TM. M, which accepts either £, or L, . Now, as
we know the problem about recursive enumerable languages that ifwisnotin L, and 1,,then
M, can not decide. So, the problem of recursive languages is persistent with A, also. So,

N(M,) isrecursive enumerable language andhence I, U I, isrecursive enumerable 1anguageb
Tn general, recursive enumerable languages are closed under union opetation.

5. Tfa language L over some alphabet ¥ and its complement I = S*~ L is recursive
enmmerable, thenl. and 7 arerecursive languages.

Proof : We construct two Turing machines A4, for Land M, for . Now, we constructa
third TM M, based on M, and M, as shown in figure(e): T™M M, accepts w if TM' M,
accepts and rejects wif A, accepts. Itmeans,if wel, then wis accepted and if w ¢ then -
itis rejected. Since , for all w, either w is accepted or rejected. Hence, M; is based on algorithm
and produces either "YES" or "NO” for input string w, but not both. Itmeans, M, decidesall the

strings over ¥ . Hence,, Lis recursive. As we know that complement of a recursive language is
also recursive and hence J isalsorecursive.

YES 'f
S et VES
My e H
T T L NO :
1
ey NO §
B, et YES
L I YES i

Figure(e)

8.22 : FORMAL LANGUAGES AND AUTOMATATHEORY

6. We have following co - theorem based on above discussion for recursive enumerable and
recursive languages.

LetLand T aretwo languages, where T the complement of L, then one ofthe following
istrue: :

(2) Both Land 7 arerecursive languages,

(b) Neither L nor T istecursive languages,

(¢) IfL is recursive enumerable but not recursive, then 7, is not recursive enumerable and
vice versa, ‘

Undecidable Problems about Turing Machines
Tn this section, we will first discuss about halting problem in general and then about ™.

Halting Problem (HP)
The halting problem is a decision problem which is informally stated as follows:

"Givena description of an algorithm and adescription of its injtial arguments, determine whether
the algorithm, when executed with these arguments, ever halts. The alternative is thata given
algorithm runs forever without halting.”

Alan Turing proved in 1936 that there is no general method or algorithm which can solve the
halting problem for all possible inputs. An algorithm may contain loops which may be infinite or
finite in length depending on the inputand behaviour of the algorithm. The amount of work done
in analgorithm usually depends on the input size. Algorithms may consist of various number of
loops, nested or in sequence. The HP asks the question

Given a program and an input to the program, determine if the program will eventually stop when
it is given that input ?

One thing we can do here to find the solution of HP. Let the program run with the given input and
if the program stops and we conclude that problem is solved. But, ifthe program doesn't stop in
a reasonable amount of time, we can not conclude that it won't stop. The questionis: "how long
we canwait ..., 7 . The waiting time may be long enough to exhaust whole life. So, we can ot
take it as easier as it seems to be. We want specific answer, either "YES® or Q", and hence
some algorithm to decide the answer.

COMPUTABILITY THEORY 8.23

The importance of the halting problem lies in the fact that itis the first problem which was proved
undecidable. Subsequently, many other such problems have been described. '

Theorem : HP is undecidable.

Proof : This proofwas devised by Alan Turing in 1936. Initially, we assume that HP is decidable
and the algorithm (solution) for HP is H. The halting problem solution H takes two inputs :

1. Description of TM M i.e. program P and
2, InputIfor the program P.

H generates an output "YES" if H determines that P stops on input I or it outputs "NO" if H
determines that P loops as shown in figure(a).

Program P

: YES
H
m— NO
Inputi
Figure{a)

Note : When an algorithm is coded, it is expressed as a string of characters . Input is also
coded into the same format. So, after coding, a program and data have no difference in their
format of tepresentation and so, a program can be treated & data sometimes and a datacanbe
treated as a program sometimes. '

So, now H can be modified to take P as both inputs (the program and its input) and H should be
ableto determine if P will halt on P as if's input shown in figure(b).

Program P

NO.{ YES

P .
Program To0p

Y
pus

o

E

Input i

YES

Figure{b)

8,24 FORMAL LANGUAGES AND AUTOMATA THEORY

Let izs construct a new, simple algorithm Q that takes output of H as its input and does the
following : _

1. Houtpuis "NO" then Q outputs "YES" and halts.
2. Otherwise H's output "YES" causes Q to loop forever.

I means, Q does the opposite what H does.

We define Qas follows:

Function Q()
{
if (Function H()="NO")
{
return {"YES"),
}
else
{ | - |
while (1); // Loop for ever
b
} // End of the function Q

Since, Q is a program, now let us use Q as the input to itself as shown in figure(c).

Program P

-

Input i

Figure(c)

COMPUTABILITY THEORY 8.25

Now, we analyse the following :
1. If H outputs "YES" and says that Q halts then Q itself would loop (that's how we
constructed it),
2. IfHoutputs "NO" and says that Q loops then Q outputs "YES” and will halts,
Since , in either case Fl gives the wrong answer for Q. Therefore, H cannot work inall cases
and hence can't answer right for all the inputs. This contradicts our assumption made earlier for
HP Hence, HP is undecidable.

Theorem ; HP of TM is undecidable. _
Proof : HP of TM means to decide whether or not a TM halts for some input w. We canprove
this following the sirnilar steps discussed in above theorem.

8.6 UNIVERSAL TURING MACHINE

The Church - Turing thesis conjectured that anything that can be done on any existing digital
computer can also be done by a TM. To prove this conjecture. A. M. Turing was able to construct
a single TM which is the theoretical analogue of a general purpose digital computer. This machine
is called a Universal Turing Machine (UTM). He showed thatthe UTM is capable of initiating
the operation of any other TM, that is, it is a reprogrammable TM. We can define this machine in
more formal way as follows :

Definition : A Universal Turing Machine (denoted as UTM) is a TM that can take as inputan
arbitrary TM 7, with an arbitrary input for 7, and then perform the execution of T, onitsinput.

What Turing thus showed that a single TM can acts like a general purpose computer that stores
aprogram and its data in memory and then executes the program. We can describe UTM asa 3

-tape TM where the description of TM, T, and itsinput string x € 4 * are stored initially on the
first tape, ¢,. The second tape, ¢, used to hold the simulated tape of 7, , using the same format '
as used for describing the TM, 7, . The third tape , ¢, holds the state of T,

| Ta x

Cresceiprtion of Ty with s dnpurx
Control

Uit . . o o
ok LT E
i “Tape conteats of Ta

Stateaf Ta

8.26 FORMAL LANGUAGES ANDAUTOMATA THEORY

To construct a UTM, we thus require three essentials, viz.,
@) auniform method to describe or encode any TM into a string over a finite symbol set, L
(i asimilarmethod of encoding any input string for a TM into a string over [, and
(i) a set of TM programs (i. ¢., a set of instructions for any TM) that describe the TMs basic
cycle of operations.

Encoding an arbitrary TM

Since a TM can have only a finite munber of configurations defined by { s, 4, b, &', 4), wecan
describe or encode any TM in terms of fixed symbols of universal Turing machine.

Let the internal states of a T™, T, ,isgivenby
S = {S(b Sl’ SZ& aaves Snwb Sn }
where S, is the initial state, and S, = H , halting state.

We define the encoding for T,s configurations as follows :

Originél _ Code
. Sf_ ii-‘k]
4 1+
R R
L L
N N

We use the symbol *0' as a separator between each encoded symbol of a configuration.

For éxample, in the TM for parity checking , we have
S = {8y, Sy Sy, H},and
A={8, 0,1, ED,}
therefore, the encoding for the configuration (S, B, D, H, N) willbe 1101011111011110N.

COMPUTABILITY THECRY 8. 27

Now, suppose that a Turing machine, T, , is consisting of a finite number of configurations,

denoted by, € Gis €350 €, and let &, s Gy,ene0s €, represent the encoding of them. Then, we

can define the encoding of 7, as follows : |
YO RE BEH.. B

Here, * and # are used only as separators, and cannot appear elsewhere. We use apair of*sto

enclose the encoding of each configurationof TM, T, .

The case where 8(s,q) 1s undefined can be encoded as follows

#5005 0B #
where the symbols § , @ and F stand for the encoding of symbols, s , a and B (Blank character),
respectively. :

Working of UTM

Griven a description of a TM, T, and its inputs representation on the UTM tape, ¢, and the

starting symbol on tape , #,, the UTM starts executing the quintuples of the encoded TM as

follows :

1. The UTM gets the current state from tape, ¢, and the current input symbol from tape ¢, .

2. then, it matches the cutrent state - symbol pair to the state symbol pairs in the program listed
ontape, 7,. '

3. ifno match occurs, the UTM halts, otherwise it copies the next state into the current state
cell of tape, 1,, and perform the corresponding write and move opefations on tape, 7, .

4, ifthe current state ontape, #, is the halt state, then the UTM halts, otherwise the UTM goes

- back to step 2. :

8.7 POST'S CORRESPONDENCE PROBLEM (PCP)

Post's cotrespondence problem is a combinatorial problem formulated by Emil Post in 1946.
This problem has many applicationsin the field theory of formal languages.

Definition :

A correspondence system P is a finite set of ordered pairs of nonempty strings over some alphabet.

8.28 FORMAL LANGUAGES AND AUTOMATATHEORY

Let 5. be an alphabet, then P is finite subset of £* x £*. A match or solution of Pisany
string v e ¥ such that pairs (i, 0,), (hy, V), cvives (2,0 0,) € P aid w= Uy Uyereilly, = Bl Uy
forsomen> 0. The selected pairs (u,, v (15,04 Jsowns {#,,0,) are not necessarily distinct.

Let strings u,,u,,, u,areinUandstrings v, v,,, v, areinV, then
U={th, e,y a0dV={ 0, g, ..., 0, } Torsomem>0,

PCP is to determine whether there is any match or not for a given correspondence systom.

Theorem : PCP is undecidable
PCPis undecidable just like the HP of Turing machine.

Example 1: A correspondence system P = { (b, a), (ba.ba), (bab’, b*)} .
Is there any solution for P ?

Solution ;: We represent the P as follows :

i uy t;
1 b a

2 ba ba
3 bub’ 5

Here, u =b, u, =ba, u, =bab’, v,=a, v, =ba, v,=b".
1 2 3 H 2 3

We have asolution w= u, w4, 1, = U, 0,0, =bab’b’a.

Example 2 : Consider a correspondence system P= { (b, ca), { a, ab), { ca, a), (abc, ¢} }.
Find a match (if any).

Solution : We represent the P as follows :

i o 4 U;
1 b ca
2 a ab
3 abe e

COMPUTABILITY THEORY 8.28

Here, uy=b, u, =a, u; =abe, py=ca, v,=ab, vy=c.

We haveasolution w=u, u, = v, v =abea -

8.8 TURING REDUCIBILITY

Reduction is a technique in which if a problem A is reduced to problem B then any solutionof B
solves A. In general, if we have an algorithm to convert some instance of problem A fo some
instance of problem B that have the same answer then it is called Areduces to B,

FIGURE: Reduction

Definition : Let Aand Bbethe twosetssuchthat 4, B ¢ N ofnatural numbers. ThenAis
Turing reducible to B and denotedas 4 <, B. '

If there is an oracle machine that computes the characteristic function of A when it is executed
with oracle machine for B.

This is also called as Ais B - recursive and B - computable. The oracle machine is an abstract
machine used to study decision problem. It is also called as Turing machine with black box.

We say that A is Turing equivalent to Band write 4 =, Bif 45, Band B<; 4.

Properties :
1. Every setis Turing equivalent to its complement.
2. Bvery computable set is Turing equivalent to every other computable set.

3. A<, Band B, Cthen 4%, B.

8.9 DEFINITION OF P AND NP PROBLEMS

A problem is said to be solvable if it has an algorithin to solve it. Problems can be categorized
into two groups depending on time taken for their execution.

8. 30 EORMAL LANGUAGES AND AUTOMATA THEQRY

1. The problems whose solution times are bounded by polynomials of small degree.
Example: bubble sort algorithm obtains n numbers in sorted order in polynomial time

P(n) = n* —2n+1 wherenis the length of input. Hence, it comes under this group.

2. Second group is made up of problems whose best known algorithm are non polynomial
example, fravelling salesman problem has complexity of O(n* 2"} which is exponential.
Hence, it comes under this group.

A problem can be solved if there is an algorithm to solve the given problem and time required is
expressed as a polynomial p(n) , nbeing length of input string. The problems of first group are of
thiskind.

The problems of second group require large amount of time to execute and even require moderate
size 5o these problems are difficult to solve. Hence, problems of first kind are tractable or easy
and problems of second kind are intractable or hard.

8.9.1 P.-Problem

P stands for deterministic polynomial time. A deterministic machine at each time executes an
instruction. Depending on instruction, it then goes to next state which is unique.

Hence, time complexity of deterministic TM is the maximum mumber of moves made by Mis
processing any input string of lengthn, taken over all inputs of length 1.

Definition : Alanguage 1. is said to be in class Pif there exists a(deterministic) TM M such
that M is of time complexity P(n) for some polynomial P and M accepts L.

Class P consists of those problem that are solvable in polynomial ime by DTM.

8.9.2 NP -Prohiem

NP stands for nondeterministic poiyﬁomiai time.

The class NP consists of those problems that are verifiable in polynomial time. What we mean

here isthat if we are given certificate of a solution then we can verify that the certificate is correct
in polynomial ime in size of input problem,

COMPUTABILITY THEORY 8.31

Example :
Hamiltonian circuit problem. Given a directed graph G =<V, E >, acertificate wouldbe a

sequence <V W, W;,...V, > of V] vertices. It is easy to verify in polynomial time that

¥, +V,+ 1) € £ fori=1,2,|V] -and () € £ as well using anondeterministic algorithm.

Henoe it is in class NP. There doesnot appear any deterministic algorithms o recognize those
graphs with Hamiltonian circuit. Hence itisnot in class P.

A nondeterministic machine has a choice of next steps. Itis free to choose any move that it
wishes and if the problem has a solution one of these steps will lead to solution. :

Definition ; AlanguageLis in class NPif there is anondeterministic TM such that M is of time
complexity P(n) for some polynomial P and M accepts L.

The difference between P and NP problems is analogous to difference between efficiently finding
aproof of a statement (such as "This graph has Hamiltonian circuit”) and efficiently verifyinga
proof of a statement "i. e., checking a particular circuit is Hamiltonian™). It is easier to check a
proofthan findingaone.

Tn other words class NP consists of problems for which solution are verified quickly. P consists
of problems which can be solved quickly.

Any problem in Pis also in NP, but itis not yet known that P =NP. Hence, commonly believed
- relationship between Pand NP s,

FIGURE: Relationship between P and NP Problems

8.32 FORMAL LANGUAGES AND AUTOMATA THEORY

8.10 NP - COMPLETE AND NP - HARD PROBLEMS

A problem § is said to be NP- Complete problem if it satisfies the following two conditions.
1. SeNP,and

2. For every other problems S, e NP for some i=1,2, n, there is polynomial - time
transformation from S, 0 § 1i.¢. everyprobleminNP classpolynornial -timereducibleto S,
We conclude one thing here that if S, is NP - complete then S is also NP - Complete.

As aconsequence, if we could find a polynomial time algorithm for S, then we can solve all NP
problems in polynomial time, because all problems in NP class are polynomial - time reducible to
each other.

"A problem P is said to be NP - Hard_if it satisfies the second condition as NP - Complete, but
not necessarily the first condition ", '

The notion of NP - hardness plays an important role in the discussion about the relationship
between the complexity classes P and NP, It is also often used to define the complexity class NP
- Complete which is the intersection of NP and NP - Hard. Consequently, the class NP - Hard
can be understood as the class of problems that are NP - complete or harder.

Example : AnNP- Hard problem is the decision problem SUBSET - SUM whichisas follows.

" Given a set of integers, do any non empty subset of them add up to zero? Thisisayes/no
question, and happens to be NP - complete "

There are also decision problems that are NP - Hard but not NP - Complete , for example, the
halting problem of Turing machine. It is easy to prove that the halting problem is NP - Hard but
not NP - Complete. It is also easy to see that halting problem is not in NP since all problems in
NP are decidable but the halting problem is not (voilating the condition first given for NP -
complete languages). :

In Complexity theory, the NP~ complete problems are the hardest problems NP class, inthe
sense that they are the ones most likely not to be in P class. The reason is that if we could find a
way to solve any NP - complete problem quickly, then you could use that algorithm to solve all
NP problems quickly.

Atpresenttime, all known algorithms for NP - complete problems require time whichis exponential
in the input size. It is unknown whether there are any faster algorithms for these are not.

COMPUTABILITY THEORY C 8.33

S. A. Cook in 1971 proved that the Boolean satisfiability problem is NP - Complete. After
Cook’s original results, thousands of other problems have been shown to be NP - complete by
reductions from other problems previously shown to be NP - complete. -

Example : Consider an interesting problem in graph theory knownas " Graph isomorphism’”.

Two graphs are isomorphic if one can be ransformed into the other simply by renaming vertices.
Consider these two problems given as follows

Graph isomorphism : Is graph G, isomorphic to graph G, ?

 Subgraph Isomorphism : Isgraph G, isomorphic to a subgraph of graph G, ?

The " Subgraph Isomorphism” problem is NP - complete, but the " Graph Isomorphism" problem
is suspected to be neither in Pnor in NP - Complete, though it is obviously inNP. Thisisan
example of a problem that is thought to be hard, but it is not thought to be NP - Complete.
Following are some other NP - complete and NP - Hard p_robiems :

(1) The Boolean Satisfiability Problem (SAT)

In mathematics, a formula of propositional logic is said to be satisfiable if truth - values can be
assigned to its free variables in sucha way that this assignment makes the formulatrue. The class

of satisfiable propositional formulae is NP - Complete problem.

Consider the logical operators defined as follows :

And : Thisis denoted by “and 0r1T=120=240,
N0 =0,1 M1 =1,
OR : This is denoted by v and gvi=1ty0=1,

tvi=1, 0v O“"'O,&ﬁ(i

NOT : Thisis denoted by 'and 0'=1, 1'=0.
Now, consider the expressions

(@) E, =x" v y,wherex,yare variables ; either Oor 1 So, E, = 1ifx=0o0ry= 1
Therefore, £, is satisfiable forx=0ory=1.

8.34 FORMAL LANGUAGES AND AUTOMATATHEORY

(b) E, =(x v ¥) Ax' A ¥ isnotsatisfiable because every assignment for the variables x
and y will make the value of £,=0.

(2) The Travelling Salesman or Salesperson Problem
The problem is defined as follows .

"Given a number of cities and the cost of travelling from one to the other, what is the cheapest
roundtrip route that visits each city and then refurns to the starting city 7"

The most direct answer would be to try all the combinations and see which one is cheapest, but
given that the number of combinations of cities isn I (factorial n), this solution becomes impractical
for larger n, where n is the number of cities.

How fast are the best known deterministic algorithms ?

This problem has been shown to be NP - Hard, and the decision version of it which is given
below:

" " Given the costs of routes between cities and a number N, decide whether there exists a tour
program for salesman to visit all the cities so that the total cost is less than or equal to N."

The above version of salesman problem is NP - Complete problem. |
(3} The Hamiltonian Cycle or Hamiltonian Circuit Problem

This problem is in graph theoty to find a path through a given graph which starts and ends at the
same verfex and includes each vertex exactly once.

This isa special case of the travelling salesman problem obtained by setting the distance between
two cities to unity if they are adjacent and infinity otherwise. Like the traveling salesman problem,
the Hamiltonian cycle problem is NP - Complete.

{4) The Vertex Cover Problem
This problemis stated as follows .
" Given & graph G and a natural number K, does there exist a vertex covering for G withK

vertices.”
This is NP - complete problem.

COMPUTABILITY THEORY 8.35

REVIEW QUESTIONS

Q1. Explain about chomsky hierarchy of languages.
Answer : '

For Answer refer to Topic :-8.1, Page No : 8.1,
Q2. Explain about LBA with an example.

Answer : :

For Answer refer to Topic : 8.2, Page No : 8.5.
Q3. Explain about CSLs with an example.

Answer : :

For Answer refer to Topic : 8.3 , Page No : 8.8.
Q4. Write a short notes on LR(0) grammar.

Answer ;

For Answer refer to Topic : 8.4.1, Page No : 8.11.
Q3. Write a short notes on Decidability.

Answer : . :

_ For Answer refer to Topic : 8.5, Page No ; 8.16.
Q6. Explain Halting problem.

Aunswer !

For Answer refer 1o Page No 1 8.22.

- Q7. Briefly describe universal Taring machine.
Answer :

For Answer refer to Topic : 8.6, Page No : 8.25.
Q8. Explain PCP in detail. |
Answer :

For Answer refer to Topic : 8.7, Page No: 8.27.
Q9. Explain the Turing reducibility in detail.

Anrswer :

For Answer refer to Topic : 8.8, Page No : 8.29.
Q10. Discuss about P and NP problems.

Answer ;

For Answer refer to Topic : 8.9, Page No : 8.29.
Q11. Giving relevant examples explain NP Hard and NP complete problems.
Answer '

For Answer refer to Topic : 8.10, Page No : 8.32.

COMPUTABILITY THEORY 8.37

10.

1) 8

12.

13.

14.

15

Choose which of the following is not correct:

() Recursive languages are closed under complementation

(b) Set of recursively enumerable languages is closed under union

(c) Ifalanguage and its complement are both regular, then the language must be recursive
(d) None of the above.

Given the following statements:

(i) Every monotonic grammar G is equivalent to a type 1 grammar.

(i) A context sensitive language is recursive.

(iii) There exists a recursive set which is not a context sensitive language over {0, 1}.
Which of the following statements are true?

(a) All (i), (ii) and (iii) (b) Only (1) and (iii)
(¢) Only (ii) and (iii) ' (d) Only (i) and (ii)
Which one is false:

() L isrecursive then TM halts for every x belongsto L.

(b) If L & Complement L both are recursive Enumerable then L is recursive:
(c) Complement of a recursive language is again recursive

(d) Every recursive enumerable language is recursive.
The family of recursive languages is not closed under which of the following operations:

(a) Complementation (b) Union

(c) Intersection (d) None of these.

Any language generated by an unrestricted grammar is

(a) Not recursively enumerable (b) Recursive

(c) Recursively enumerable (d) None of these.

Let A= set of recursive languages B=set of recursively enumerable languages. Then
(a)4 and B are disjoint sets. (b) 4 and B are the same set

(c) Bisasubsetof 4 (d) Aisasubsetof B

Which of the following statements is true?
(a) A context sensitive language is recursive.

(b) A set X is recursive if we have aalgorithm to decide whether a given element belongs
to X or not.

(c) A recursive set is recursively enumerable.
(d) All of the above.

8,38

FORMAL LANGUAGES AND AUTOMATA THEORY

i6.

17.

18.

19,

20.

21.

22.

23.

Theunionoftwo recursively enumerable languages is:

{a) recursive enumerable {(b) recursive

{c)not(b) (dynone

Which of the following properties of recursively enumerable set isnot recursively enmerable,
(a) L contains atleast 10 members by L-L, #4¢

©L%d @ 75"

Which of the following properties of recursively enumerable setisrecursively enumerable.
@r=3

(b) L isrecursive

(¢) L—L, = ¢, (L, is the universal language)

D IL=¢

Universal Languageis:

(a) recursive {b)decidable

(¢) non-recursively enumerable (d) recursively enumerable

Let L and L' beapair of complementary languages then,

{a)OneofLandis recwszve}y enumerable but notrecursive & the other is not recursive
enumerable

(b)Both L and L' arerecursive

(c)Neither . nor I’ isrecursively enumerable -

(d) Any one of the above.

Which of the following statements are false:

(a) If a language L and its complement L are both recursively enumerable, then
L {andhence L }iSrecursive, '

(b) The complement of a recursive language is recursive.

{c) The union of two recursive langauge is recursive. The union of two rectzrmveiy enwriembie
languages is recursively enumerable. i

(d)None.
The complement of recursive is; :
{a) can't say (b recursive {c) non-recursive {dynone.

A problem whose language is recursive is said to be:
(a) can't say (b) decidable (c)undecidable {Dynone.

COMPUTABILITY THEORY 8.39

24.

23,

26.

27,

28.

29.

30.

31.

Select the false statement:

(a) The blank-tape halting problem is undecidable

{b) The Turing Machine Haiting problem is Undecidable
(c) The Turing Machine Halting problem is decidable
{dyNone of the above.

Which of the following statement is correct?

() Ifthe emptiness problem is undecidable for Type 0 grammars, then it is also undecidable
for Type 3 grammars.

(b) Ifthe emptiness problem is decidable for Type 3 grammars, then it is also decidable for

Type 0 grammars _
(¢) Ifthe emptiness problem is decidable for Type 0 grammars, then it is also decidable for

Type 3 grammars. -
(d) None of the above.

The problem of determining thata ’furing Machine would halt after giving a Yes/No output
is

(a) Decidable (b)Unsolvable {c) Solvable {d) None of the above.
Which of the following subset relation doesn'thold?
(@) Ly c L, (b) Loy < Lo © Ly < Ly (@ L, © Ly

Let G be any unrestricted grammar. Then the problem of determining whether or not
L(G) = bis |

(a) Cannot say _ (b) Decidable

(c) Undecidable (d) None of these.

What can you say about the membership problem for Type 0 grammars?
~ (a) Partially decidable _ (b)Decidable °

(¢)Undecidable (d) None of the above.

ALanguageissaid toberecursiveif:

() it is not recursively enumerable and its complement is not recursively enumerable.

(b) it is recursively enumerable and its complement is recursively enumerable.

(¢) itis not recursively enumerable and its complement is recursively enumerable

(d) itis recursively enumerable and its complement is _nbt recursively enumerable.

Let L be a language which is not recursively enumerbale. Then complement of L must be
{2) Not recursive ~ (b)Recursive

{¢)Recursively enumerable ' (d) None of these.

§.40

FORMAL LANGUAGES AND AUTOMATA THEORY

32.

33.

34.

35.

36.

37.

38,

39,

40.

41,

42.

What can you say about the membership problem for Type O grammars?

(a) Partially decidable {b) Decidable

(c) Undecidable (d) None of the above.

The problem of determining whether ornota TM over {0,1} will ever printthe symbol 1,
witha given tape configuration is

{a) Unsolvable (b) Solvable {c)None of these

Given an arbitrary Turing machine T, it is undecidable "whether 7 accepts the empty word

i
e?

(@) True {b)False
Given atype 0 grammar G and a word w, it is undecidable "whether G generates w?"
(&) True (b) False '

Given a Turing Mahine T and word w, it is undecidable "whether 7 halts when the string
w is placed on the input tape?”

{a) True : (b) False

et G be a context-sensitive grammar. It is decidable "whether any word x e L(G)?"
{a) True (b) False

Ttisdecidable "whether L(G)is infinite, where Gis any context-free grammar?”
{a) Tive (b) False

Ttisdecidable "whether L(G) = ¢, where G is any context free grammar?”

(a) True _ (b) False

Ttis decidable "whether a given right-linear grammar G, = {N1, T}, Sy, A} contains any
useless non-terminals?"

{a) True - ' {b) False

Find the odd man out

{a) Post Correspondence Problem.

(b) Blank Tape halting problem

(¢) State-entry problem.

(d) The halting problerm of turing machines

Decidability in Decidable and Undecidable Problems refersto

(a) Those problems whose answer are only either in "yes" or "no™.

(b) Existence of algorithm which takes an instance of the problem and determines whether
the answer to that instance is "yes" or "no"

(c) Existence of algorithm which generates the set of solutions.

(&) Unsolvability

COMPUTABILITY THECORY 8. 41

43,

44.

43,

46.

41.

48.

49.

Which of the following is decidable?

(a) The problem to decide whether CFG is ambiguous or not.

(b) The modified Post Correspondance Problem :

() The problem to determine whether a string is in G or not, where G is unrestricted
gremmmar.

(d)None of the above.

Which of the following is decidable?

(a) The problem to decide whether CFG is ambiguous ornot.

{b) The modified Post Cortespondance Problem

(c) The problem to determine whether a string is in G or not, where G is unrestricted
gramiar.

(d) None of the above.

Which of the following is decidable?

(a) The question whether ornot L(M)is finite, where Misa Turing Machine.

(b) The halting problem

(c) The problem of determining whetherornot L(G) = ¢ where Gis unrestricted grammar.
(d) None of above. '

For post Correspondance probiem(PCP) and Modified PCPMPCP)

{(a) Bothare equivalent

(b) Both are unrelated :

{0) If there exists MPCP solution then there is a PCP solution

(&) Ifthere exists PCP solution then there is a MPCP solution

1f we have a procedure to determine whether a given element belongs to aset X or not,
then this setis called....vnena. _

(a) Context-sensitive {b) Complete.

{c) Recursively Enumerable (d) .Recursive

if' we have an algorithm to determine whether a given element belongs to aset Xornot, -
then this setis called........... _

(a) Context-sensitive (b) Complete.
(¢) Recursively Enumerable {d) Recusive

If2 lists ate x = {b,bab’,ba} and y = {b*,ba, a(a)} then solution of PCP problemis:
(a) 1,2,33 (b) 21,133 (¢} 2,13 (d)none

8.42

FORMAL LANGUAGES AND AUTOMATATHEORY

50.

51.

52.

53.

54.

55.

56.

' PCP is decidable then MPCP is

(a) Can't say (b)decidable

{c) Undecidable _ {d)none

Which of the following statements is true?

(@ pep with x = (b3,abz) and y = (53,bab3)kas a solution
(b) PCP with {(01,011),(1,16),(1,11)} has a solution.

(¢) PCP with {(0,10),(120,03),(021,10)} has a solution

{d)None of the above.
Which of the following statements is false?

(@)PCPover & for | £z 2isunsolvable
(b) PCPwithtwo lists x = (5, bab? ba) and y = (63 ,ba,a)hasno sohution.
(¢) PCP with two lists x = (01,1,1) and y = (012,10,1%)has no solution.

() None of the above.

What can you say about the membership problem for Typel grammars?
(a) Partially decidable _ (b)Decidable

(¢) Undecidable (d) None of the above.
PCPis

(a) Sometimes undecidable (b) Decidable

(c) Undecidable {d) None.

Which of the following instances of the Post Correspondence Problem have a viable
sequence? '

@) {(ab,abb).(ba,aaa),(aa,a}}

i) {{ab, aba),(baa, aa),(aba, baa)}

(ii) {(b, bb), (bb, bab), (bab, abb),(abb, babb)}

(a) 1,2 and 3. (b} 1 and 2 only | {c) 2only (&)1 only

If 1, and I, are any two context free languages (type 2) overan alphabet 3 and |Z12 2,
there is no algorithm to determine whether or not

@ L=I (b) Lo Lz

() Ly nI,,1s acontext free language (d) LinIy=¢
(e) All of the above (f) None of the above

COMPUTABILITY THEGRY 8.43

57. The membership problem for Type 0 grammars is ?
() Partially decidable (b) Decidable
(¢) Undecidable {d) None of the above
58. PCPisdecidable fortwo setof strings wand v, if
(2) The strings consist of just one character repeated any no of times i.e., input symbol set
isasigleton
{b) Corresponding strings in w and v are of equal length
(¢) Both the above. |
{d) Itis never decidable.
59, Whichofthe following problems is decidable?
(a) Whether L{M) is finite fora TM'M'

(b) Halting problem of TM
(c) Whether L(G) is empty for unrestricted grammar G
{d)None
60. The statement "halting problem is unsolvable™is
(a)still an open question : ' (b) true
(¢) false (BHAl
61. Inherent ambiguity for CFLs is: |
(a) Can't say () Decidable (¢) Undecidable (d)none

62. Ifaproblem A isreducibleto Py then whichofthe following does not hold?
(a)If P, issolvable thensois A .
(b) R isatleastashardas .
(¢} If B isnon-recursively enumerable thensois 7.
() If A isunsolvablethensois B
63. Which ofthe following problemsis decidable :
(a) Isa given CFL equal to * 7 (b)Are 2 CFls the same?

(c) Isthe intersection of 2 CFls empty? (d) Is a given grammar ambiguous?
(¢) None of the above

8.44 FORMAL LANGUAGES AND AUTQMATA THEORY

64. Consider, the following modifications of the Post Correspondence Problem :
(i) There is an MPC-Solution if there is a sequence of integers such that

WE‘Wj..‘.Wle =)y Uj...l}}cl)}
(ii) There is an MPC-Solution if there is a sequence of integers such that
WWIWW . W = 01 0200 5.0 Then,

(2) 1 and 2 are un-decidable (b) 1 is un-decidable but 2 is decidable
(¢) 1 is decidable but 2 is un-decidable (d) 1 and 2 are decidable
u ANSWER KEY

@ 2@ 3@ 4@ 50 66 70 8@ 9(b) 104
1.6 124d) 13.0) 14.(8) 15.0) 164¢) 17.(b)}184c) 194a) 204d)
21.(b) 22(d) 23.0e) 24.4c) 25.c) 26.4b) 274d) 28.c) 294d) 30.0)
31.@) 32.a) 33.(@) 34.) 35.3) 36.(a) 37.3) 38.() 39.() 40.(3)
41(a) 42.(b) 43.(d) 44(c) 45.(d) 46.(a) 47.(c) 48.(d) 49.c) 50.(a)

SL(d) 52.(d) S3.(b) 54(c) S54d) 56.0) 57.(B) S8 39(a) 60.c)
1 61.(b) 62.(b)63.e) 64.(a)

	UNIT1-1.pdf (p.1-107)
	UNIT-LABELS_1.pdf (p.1)
	F.A-I.pdf (p.2-108)

	UNIT2-1.pdf (p.108-197)
	UNIT-LABELS_2.pdf (p.1)
	RE2.pdf (p.2-90)

	UNIT3-1.pdf (p.198-271)
	UNIT-LABELS_3.pdf (p.1)
	CF3.pdf (p.2-74)

	UNIT4-1.pdf (p.272-333)
	UNIT-LABELS_4.pdf (p.1)
	4PDA.pdf (p.2-62)

	UNIT5-1.pdf (p.334-379)
	UNIT-LABELS_5.pdf (p.1)
	5TM.pdf (p.2-46)

	UNIT6-1.pdf (p.380-423)
	UNIT-LABELS_6.pdf (p.1)
	6C.pdf (p.2-44)

