
SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-I

IV B. Tech I Semester (R16) 2019-20 1

UNIT-I:

Envisioning Architecture: The Architecture Business Cycle, What is Software Architecture,

Architectural patterns, reference models, reference architectures, architectural structures and views

Envisioning Architecture:

1. The Architecture Business Cycle

1.1 Where Do Architectures Come From?

Architecture is the result of a set of business and technical decisions. There are many influences at work

in its design, and the realization of these influences will change depending on the environment in which

the architecture is required to perform.

An architect designing a system for which the real-time deadlines are believed to be tight will make one

set of design choices; the same architect, designing a similar system in which the deadlines can be easily

satisfied, will make different choices.

ARCHITECTURES ARE INFLUENCED BY SYSTEM STAKEHOLDERS

Many people and organizations are interested in the construction of a software system. We call these

stakeholders: The customer, the end users, the developers, the project manager, the maintainers, and even

those who market the system are a few examples. Stakeholders have different concerns that they wish the

system to guarantee or optimize, including things as diverse as providing a certain behavior at runtime,

performing well on a particular piece of hardware, being easy to customize, achieving short time to

market or low cost of development, gainfully employing programmers who have a particular specialty, or

providing a broad range of functions. Figure.1 shows the architect receiving helpful stakeholder

"suggestions."

Figure 1.Influence of stakeholders on the architect

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-I

IV B. Tech I Semester (R16) 2019-20 2

ARCHITECTURES ARE INFLUENCED BY THE DEVELOPING ORGANIZATION

In addition to the organizational goals expressed through requirements, architecture is influenced by the

structure or nature of the development organization. For example, if the organization has an abundance of

idle programmers skilled in client-server communications, then client-server architecture might be the

approach supported by management. If not, it may well be rejected. Staff skills are one additional

influence, but so are the development schedule and budget.

There are three classes of influence that come from the developing organization: immediate business,

long-term business, and organizational structure.

ARCHITECTURES ARE INFLUENCED BY THE BACKGROUND AND EXPERIENCE OF

THE ARCHITECTS

If the architects for a system have had good results using a particular architectural approach, such as

distributed objects or implicit invocation, chances are that they will try that same approach on a new

development effort. Conversely, if their prior experience with this approach was disastrous, the architects

may be reluctant to try it again. Architectural choices may also come from an architect's education and

training, exposure to successful architectural patterns, or exposure to systems that have worked

particularly poorly or particularly well. The architects may also wish to experiment with an architectural

pattern or technique learned from a book (such as this one) or a course.

ARCHITECTURES ARE INFLUENCED BY THE TECHNICAL ENVIRONMENT

A special case of the architect's background and experience is reflected by the technical environment. The

environment that is current when architecture is designed will influence that architecture. It might include

standard industry practices or software engineering techniques prevalent in the architect's professional

community. It is a brave architect who, in today's environment, does not at least consider a Web-based,

object-oriented, middleware-supported design for an information system.

RAMIFICATIONS OF INFLUENCES ON ARCHITECTURE

Influences on architecture come from a wide variety of sources. Some are only implied, while others are

explicitly in conflict. Almost never are the properties required by the business and organizational goals

consciously understood, let alone fully articulated. Indeed, even customer requirements are seldom

documented completely, which means that the inevitable conflict among different stakeholders' goals has

not been resolved.

A business manages this cycle to handle growth, to expand its enterprise area, and to take advantage of

previous investments in architecture and system building. Figure 2 shows the feedback loops. Some of the

feedback comes from the architecture itself, and some comes from the system built from it. The

architecture affects the structure of the developing organization. An architecture prescribes a structure for

a system; as we will see, it particularly prescribes the units of software that must be implemented (or

otherwise obtained) and integrated to form the system. These units are the basis for the development

project's structure. Teams are formed for individual software units; and the development, test, and

integration activities all revolve around the units. Likewise, schedules and budgets allocate resources in

chunks corresponding to the units. If a company becomes adept at building families of similar systems, it

will tend to invest in each team by nurturing each area of expertise. Teams become embedded in the

organization's structure. This is feedback from the architecture to the developing organization.

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-I

IV B. Tech I Semester (R16) 2019-20 3

Figure 2. The Architecture Business Cycle

1.2 Software Processes and the Architecture Business Cycle

Software process is the term given to the organization, reutilization, and management of software

development activities. What activities are involved in creating software architecture, using that

architecture to realize a design, and then implementing or managing the evolution of a target system or

application? These activities include the following:

 Creating the business case for the system

 Understanding the requirements

 Creating or selecting the architecture

 Documenting and communicating the architecture

 Analyzing or evaluating the architecture

 Implementing the system based on the architecture

 Ensuring that the implementation conforms to the architecture

ARCHITECTURE ACTIVITIES

As indicated in the structure of the ABC, architecture activities have comprehensive feedback

relationships with each other. We will briefly introduce each activity in the following subsections.

Creating the Business Case for the System

Creating a business case: is broader than simply assessing the market need for a system. It is an

important step in creating and constraining any future requirements. How much should the product cost?

What is its targeted market? What is its targeted time to market? These are all questions that must involve

the system's architects.

Understanding the Requirements: There are a variety of techniques for eliciting requirements from the

stakeholders. For example, object-oriented analysis uses scenarios, or "use cases" to embody

requirements. Safety-critical systems use more rigorous approaches, such as finite-state-machine models

or formal specification languages.

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-I

IV B. Tech I Semester (R16) 2019-20 4

Communicating the Architecture

For the architecture to be effective as the backbone of the project's design, it must be communicated

clearly and unambiguously to all of the stakeholders. Developers must understand the work assignments it

requires of them, testers must understand the task structure it imposes on them, management must

understand the scheduling implications it suggests, and so forth. Toward this end, the architecture's

documentation should be informative, unambiguous, and readable by many people with varied

backgrounds.

Analyzing or Evaluating the Architecture

In any design process there will be multiple candidate designs considered. Some will be rejected

immediately. Others will contend for primacy. Choosing among these competing designs in a rational

way is one of the architect's greatest challenges.

1.3 What Makes a 'Good' Architecture?

If it is true that, given the same technical requirements for a system, two different architects in different

organizations will produce different architectures, how can we determine if either one of them is the right

one? We divide our observations into two clusters: process recommendations and product (or structural)

recommendations. Our process recommendations are as follows:

 The architecture should be the product of a single architect or a small group of architects with

an identified leader. The architect (or architecture team) should have the functional

requirements for the system and an articulated, prioritized list of quality attributes (such as

security or modifiability) that the architecture is expected to satisfy.

 The architecture should be well documented, with at least one static view and one dynamic

view, using an agreed-on notation that all stakeholders can understand with a minimum of

effort.

 The architecture should be circulated to the system's stakeholders, who should be actively

involved in its review.

 The architecture should be analyzed for applicable quantitative measures (such as maximum

throughput) and formally evaluated for quality attributes before it is too late to make changes

to it.

 The architecture should lend itself to incremental implementation via the creation of a

"skeletal" system in which the communication paths are exercised but which at first has

minimal functionality.

2. What is Software Architecture?

The system consists of four elements, Prop Loss Model (MODP), Reverb Model (MODR), and Noise

Model (MODN)?might have more in common with each other than with the fourth model, Control

Process (CP). All of the elements apparently have some sort of relationship with each other, since the

diagram is fully connected. The models are described in figure 3.

Figure 3: Typical, but uninformative, presentation of software architecture

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-I

IV B. Tech I Semester (R16) 2019-20 5

3. Architectural patterns, Reference models and Reference architectures

 An architectural pattern is a description of element and relation types together with a set of constraints

on how they may be used. A pattern can be thought of as a set of constraints on architecture? On the

element types and their patterns of interaction? And these constraints define a set or family of

architectures that satisfy them. For example, client-server is a common architectural pattern. Client and

server are two element types, and their coordination is described in terms of the protocol that the server

uses to communicate with each of its clients. Use of the term client-server implies only that multiple

clients exist; the clients themselves are not identified, and there is no discussion of what functionality,

other than implementation of the protocols, has been assigned to any of the clients or to the server.

 A reference model is a division of functionality together with data flow between the pieces. A reference

model is a standard decomposition of a known problem into parts that cooperatively solve the problem.

 Reference architecture is a reference model mapped onto software elements (that cooperatively

implement the functionality defined in the reference model) and the data flows between them. Whereas a

reference model divides the functionality, reference architecture is the mapping of that functionality onto

system decomposition. The relationship among these design elements is shown in Figure 4.

Figure 4: The relationships of design elements

Architectural structures and views

A view is a representation of a coherent set of architectural elements, as written by and read by system

stakeholders. It consists of a representation of a set of elements and the relations among them. A structure

is the set of elements itself, as they exist in software or hardware.

For example, a module structure is the set of the system's modules and their organization. A module view

is the representation of that structure, as documented by and used by some system stakeholders. These

terms are often used interchangeably, but we will adhere to these definitions.

Architectural structures can by and large be divided into three groups, depending on the broad nature of

the elements they show.

 Module structures: Here the elements are modules, which are units of implementation. Modules

represent a code-based way of considering the system. They are assigned areas of functional

responsibility. There is less emphasis on how the resulting software manifests itself at runtime.

 Component-and-connector structures: Here the elements are runtime components (which are the

principal units of computation) and connectors (which are the communication vehicles among

components). Component-and-connector structures help answer questions such as what are the major

executing components and how do they interact? What are the major shared data stores?

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-I

IV B. Tech I Semester (R16) 2019-20 6

 Allocation structures: Allocation structures show the relationship between the software elements and

the elements in one or more external environments in which the software is created and executed. They

answer questions such as what processor does each software element execute on? These three structures

correspond to the three broad types of decision that architectural design involves:

 How is the system to be structured as a set of code units (modules)?

 How is the system to be structured as a set of elements that have runtime behavior

(components) and interactions (connectors)?

 How is the system to relate to non-software structures in its environment (i.e., CPUs, file

systems, networks, development teams, etc.)?

SOFTWARE STRUCTURES

Some of the most common and useful software structures are shown in Figure 5. These are described in

the following sections.

Figure 5: Common software architecture structures

Module

Decomposition

The units are modules related to each other by the "is a sub module of

" relation, showing how larger modules are decomposed into smaller

ones recursively until they are small enough to be easily understood

Uses
The units of this important but overlooked structure are also modules,

or procedures or resources on the interfaces of modules.

Layered

When the uses relations in this structure are carefully controlled in a

particular way, a system of layers emerges, in which a layer is a

coherent set of related functionality.

Class
The module units in this structure are called classes. The relation is

"inherits-from" or "is-an-instance-of."

Component-

and-

Connector

Client-server
If the system is built as a group of cooperating clients and servers, this

is a good component-and-connector structure to illuminate.

Concurrency

This component-and-connector structure allows the architect to

determine opportunities for parallelism and the locations where

resource contention may occur.

Process
Like all component-and-connector structures, this one is orthogonal to

the module-based structures and deals with the dynamic aspects of a

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-I

IV B. Tech I Semester (R16) 2019-20 7

running system.

Shared data
This structure comprises components and connectors that create, store,

and access persistent data.

Allocation

Work

assignment

This structure assigns responsibility for implementing and integrating

the modules to the appropriate development teams.

Deployment
The deployment structure shows how software is assigned to

hardware-processing and communication elements.

Implementation

This structure shows how software elements (usually modules) are

mapped to the file structure(s) in the system's development,

integration, or configuration control environments.

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-I

IV B. Tech I Semester (R16) 2019-20 8

Creating Architecture: Quality Attributes, Achieving qualities, Architectural styles and patterns,

designing the Architecture, Documenting software architectures, Reconstructing Software Architecture

4. Quality Attributes

Architecture and Quality Attributes

Achieving quality attributes must be considered throughout design, implementation, and deployment. No

quality attribute is entirely dependent on design, nor is it entirely dependent on implementation or

deployment. Satisfactory results are a matter of getting the big picture (architecture) as well as the details

(implementation) correct.

Architecture is critical to the realization of many qualities of interest in a system, and these qualities

should be designed in and can be evaluated at the architectural level. Architecture, by itself, is unable to

achieve qualities. It provides the foundation for achieving quality, but this foundation will be to no avail if

attention is not paid to the details. We will examine the following three classes:

 Qualities of the system. We will focus on availability, modifiability, performance, security,

testability, and usability.

 Business qualities (such as time to market) that are affected by the architecture.

 Qualities, such as conceptual integrity, that is about the architecture itself although they indirectly

affect other qualities, such as modifiability.

Quality Attributes Scenarios

A quality attribute scenario is a quality-attribute-specific requirement. It consists of six parts.

 Source of stimulus: This is some entity (a human, a computer system, or any other actuator) that

generated the stimulus.

 Stimulus: The stimulus is a condition that needs to be considered when it arrives at a system.

 Environment: The stimulus occurs within certain conditions. The system may be in an overload

condition or may be running when the stimulus occurs, or some other condition may be true.

 Artifact: Some artifact is stimulated. This may be the whole system or some pieces of it.

 Response: The response is the activity undertaken after the arrival of the stimulus.

 Response measure: When the response occurs, it should be measurable in some fashion so that

the requirement can be tested.

Figure 6: shows the parts of a quality attribute scenario.

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-I

IV B. Tech I Semester (R16) 2019-20 9

Availability Scenario

A general scenario for the quality attribute of availability, for example, is shown in Figure 4.2. Its six

parts are shown, indicating the range of values they can take. From this we can derive concrete, system-

specific, scenarios. Not every system-specific scenario has all of the six parts. The parts that are necessary

are the result of the application of the scenario and the types of testing that will be performed to determine

whether the scenario has been achieved.

Figure 7: Availability general scenarios

Modifiability Scenario

A sample modifiability scenario is "A developer wishes to change the user interface to make a

screen's background color blue. This change will be made to the code at design time. It will take

less than three hours to make and test the change and no side effect changes will occur in the

behavior." Figure 8 illustrates this sample scenario.

Figure 8: Sample modifiability scenario

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-I

IV B. Tech I Semester (R16) 2019-20 10

5. Achieving qualities

The achievement of these qualities relies on fundamental design decisions. We will examine these design

decisions, which we call tactics. A tactic is a design decision that influences the control of a quality

attribute response. A system design consists of a collection of decisions. Some of these decisions help

control the quality attribute responses; others ensure achievement of system functionality.

Figure 9: Tactics are intended to control responses to stimuli

We organize the tactics for each system quality attribute as a hierarchy, but it is important to understand

that each hierarchy is intended only to demonstrate some of the tactics, and that any list of tactics is

necessarily incomplete.

5.1 Availability Tactics: A failure occurs when the system no longer delivers a service that is consistent

with its specification; this failure is observable by the system's users. A fault (or combination of faults)

has the potential to cause a failure. Recall also that recovery or repair is an important aspect of

availability. We first consider fault detection. We then consider fault recovery and finally, briefly, fault

prevention.

Figure 10: Goal of availability tactics

Figure 11: Summary of availability tactics

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-I

IV B. Tech I Semester (R16) 2019-20 11

5.2 Modifiability Tactics: We organize the tactics for modifiability in sets according to their goals. One

set has as its goal reducing the number of modules that are directly affected by a change. We call this set

"localize modifications." A second set has as its goal limiting modifications to the localized modules.

We use this set of tactics to "prevent the ripple effect." Implicit in this distinction is that there are

modules directly affected (those whose responsibilities are adjusted to accomplish the change) and

modules indirectly affected by a change (those whose responsibilities remain unchanged but whose

implementation must be changed to accommodate the directly affected modules). A third set of tactics has

as its goal controlling deployment time and cost. We call this set "defer binding time."

Figure 12: Goal of modifiability tactics

Figure 13: Summary of modifiability tactics

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-I

IV B. Tech I Semester (R16) 2019-20 12

5.3 Performance Tactics: The event can be single or a stream and is the trigger for a request to perform

computation. It can be the arrival of a message, the expiration of a time interval, the detection of a

significant change of state in the system's environment, and so forth. The system processes the events and

generates a response. Performance tactics control the time within which a response is generated.

Figure 14: Goal of performance tactics

Figure 15: Summary of performance tactics

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-I

IV B. Tech I Semester (R16) 2019-20 13

5.4 Security Tactics: Tactics for achieving security can be divided into those concerned with resisting

attacks, those concerned with detecting attacks, and those concerned with recovering from attacks. All

three categories are important. Using a familiar analogy, putting a lock on your door is a form of resisting

an attack, having a motion sensor inside of your house is a form of detecting an attack, and having

insurance is a form of recovering from an attack.

Figure 16: Goal of security tactics

Figure 17: Summary of tactics for security

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-I

IV B. Tech I Semester (R16) 2019-20 14

5.5 Testability Tactics: The goal of tactics for testability is to allow for easier testing when an increment

of software development is completed.

Figure 18: Goal of testability tactics

 Figure 19: Summary of testability tactics

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-I

IV B. Tech I Semester (R16) 2019-20 15

5.6 Usability Tactics: Two types of tactics support usability, each intended for two categories of "users."

The first category, runtime, includes those that support the user during system execution. The second

category is based on the iterative nature of user interface design and supports the interface developer at

design time. It is strongly related to the modifiability tactics already presented.

Figure 20: Goal of runtime usability tactics

Figure 21: Summary of runtime usability tactics

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-I

IV B. Tech I Semester (R16) 2019-20 16

6. Architectural styles and patterns,

An architectural pattern in software, also known as an architectural style, is analogous to an architectural

style in buildings, such as Gothic or Greek revival or Queen Anne. It consists of a few key features and

rules for combining them so that architectural integrity is preserved. An architectural pattern is

determined by:

 A set of element types (such as a data repository or a component that computes a mathematical

function).

 A topological layout of the elements indicating their interrelation-ships.

 A set of semantic constraints

 A set of interaction mechanisms

In response, a number of recurring architectural patterns, their properties, and their benefits have been

cataloged. One such catalog is illustrated in Figure 5.22

.

Figure 22: A small catalog of architectural patterns, organized by is-a relations

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-I

IV B. Tech I Semester (R16) 2019-20 17

7. Designing the Architecture,

7.1 Architecture in the Life Cycle: Any organization that embraces architecture as a foundation for its

software development processes needs to understand its place in the life cycle. Several life-cycle models

exist in the literature, but one that puts architecture squarely in the middle of things is the Evolutionary

Delivery Life Cycle model shown in Figure 23. The intent of this model is to get user and customer

feedback and iterate through several releases before the final release. The model also allows the adding of

functionality with each iteration and the delivery of a limited version once a sufficient set of features has

been developed.

Figure 23: Evolutionary Delivery Life Cycle

.

7.2 Designing the Architecture: In this section we describe a method for designing architecture to satisfy

both quality requirements and functional requirements. We call this method Attribute-Driven Design

(ADD). ADD takes as input a set of quality attribute scenarios and employs knowledge about the relation

between qualities attribute achievement and architecture in order to design the architecture. The ADD

method can be viewed as an extension to most other development methods, such as the Rational Unified

Process. The Rational Unified Process has several steps that result in the high-level design of an

architecture but then proceeds to detailed design and implementation. Incorporating ADD into it involves

modifying the steps dealing with the high-level design of the architecture and then following the process

as described by Rational.

ADD is an approach to defining a software architecture that bases the decomposition process on the

quality attributes the software has to fulfill. It is a recursive decomposition process where, at each stage,

tactics and architectural patterns are chosen to satisfy a set of quality scenarios and then functionality is

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-I

IV B. Tech I Semester (R16) 2019-20 18

allocated to instantiate the module types provided by the pattern. ADD is positioned in the life cycle after

requirements analysis and, as we have said, can begin when the architectural drivers are known with some

confidence.

The output of ADD is the first several levels of a module decomposition view of architecture and other

views as appropriate. Not all details of the views result from an application of ADD; the system is

described as a set of containers for functionality and the interactions among them. This is the first

articulation of architecture during the design process and is therefore necessarily coarse grained.

Nevertheless, it is critical for achieving the desired qualities, and it provides a framework for achieving

the functionality. The difference between an architecture resulting from ADD and one ready for

implementation rests in the more detailed design decisions that need to be made. These could be, for

example, the decision to use specific object-oriented design patterns or a specific piece of middleware that

brings with it many architectural constraints. The architecture designed by ADD may have intentionally

deferred this decision to be more flexible.

8. Documenting software architectures: Documenting the architecture is the crowning step to crafting

it. Even a perfect architecture is useless if no one understands it or (perhaps worse) if key stakeholders

misunderstand it. If you go to the trouble of creating a strong architecture, you must describe it in

sufficient detail, without ambiguity, and organized in such a way that others can quickly find needed

information. Otherwise, your effort will have been wasted because the architecture will be unusable.

This principle is useful because it breaks the problem of architecture documentation into more tractable

parts, which provide the structure for the remainder of this chapter:

 Choosing the relevant views

 Documenting a view

 Documenting information that applies to more than one view

Software architecture views are divided views into these three groups: module, component-and-connector

(C&C), and allocation. This three-way categorization reflects the fact that architects need to think about

their software in at least three ways at once:

 How it is structured as a set of implementation units

 How it is structured as a set of elements that have runtime behavior and interactions

 How it relates to non-software structures in its environment

There is no industry-standard template for documenting a view, but the seven-part standard organization

that we suggest in this section has worked well in practice.

1. Primary presentation

2. Element catalog

3. Context diagram

4. Variability guide

5. Architecture background

6. Glossary of terms

7. Other information

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-I

IV B. Tech I Semester (R16) 2019-20 19

Figure 24: The seven parts of a documented view

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-I

IV B. Tech I Semester (R16) 2019-20 20

9. Reconstructing Software Architecture: Architecture reconstruction has been used in a variety of

projects ranging from MRI scanners to public telephone switches and from helicopter guidance systems to

classified NASA systems. It has been used

 To redocument architectures for physics simulation systems.

 To understand architectural dependencies in embedded control software for mining machinery.

 To evaluate the conformance of a satellite ground system's implementation to its reference

architecture.

 To understand different systems in the automotive industry.

Reconstruction Activities

Software architecture reconstruction comprises the following activities, carried out iteratively:

 Information extraction. The purpose of this activity is to extract information from various

sources.

 Database construction. Database construction involves converting this information into a standard

form such as the Rigi Standard Form (a tuple-based data format in the form of relationship

<entity1> <entity2>) and an SQL-based database format from which the database is created.

 View fusion. View fusion combines information in the database to produce a coherent view of the

architecture.

 Reconstruction. The reconstruction activity is where the main work of building abstractions and

various representations of the data to generate an architecture representation takes place.

Figure 25: Architecture reconstruction activities.

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-I

IV B. Tech I Semester (R16) 2019-20 21

Frequently Asked Questions

1. Write a short note on Architecture Business Cycle (ABC)?

2. Explain in detail about software processes used in ABC, and explain what makes a good

architecture?

3. Define reference model, reference architecture and architectural patterns, views?

4. Briefly discuss about the list of quality attributes using quality attribute scenarios with

examples?

5. Explain how to achieve qualities in attributes using Tactics; explain about any two

attributes with examples?

6. Write a short note on architectural styles and patterns?

7. What are the phases of architectures in life cycle?

8. What are the parts of documentation, and how to reconstruct software architecture?

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-II

IV B. Tech I Semester (R16) 2019-20 1

UNIT-II: Analyzing Architectures: Architecture Evaluation, Architecture design decision

making, ATAM, CBAM

Moving from One System to Many: Software Product Lines, Building systems from off the

shelf components, Software architecture in future

1. ARCHITECTURE EVALUATION

Architecture evaluation has come to provide relatively a low-cost risk mitigation capability.

Making sure the architecture is the right one simply makes good sense. An architecture

evaluation should be a standard part of every architecture-based development methodology.

Evaluation can also be used to choose between two competing architectures by evaluating both

and seeing which one fares better against the criteria for "goodness."

Evaluations can be planned or unplanned.

 A planned evaluation is considered a normal part of the project's development cycle. It

is scheduled well in advance, built into the project's work plans and budget, and follow-

up is expected.

 An unplanned evaluation is unexpected and usually the result of a project in serious

trouble and taking extreme measures to try to salvage previous effort.

The planned evaluation is ideally considered an asset to the project, at worst a distraction from it.

Planned evaluations are pro-active and team-building.

An unplanned evaluation is more of an ordeal for project members, consuming extra project

resources and time in the schedule from a project already struggling with both. Unplanned

evaluations are reactive, and tend to be tension filled. An evaluation's team leader must take care

not to let the activities devolve into finger pointing.

A successful evaluation will have the following properties:

 Clearly articulated goals and requirements for the architecture. Architecture is only

suitable, or not, in the presence of specific quality attributes. One that delivers

breathtaking performance may be totally wrong for an application that needs

modifiability.

 Controlled scope. In order to focus the evaluation, a small number of explicit goals

should be enumerated. The number should be kept to a minimum? Around three to five?.

 Cost-effectiveness. Evaluation sponsors should make sure that the benefits of the

evaluation are likely to exceed the cost. The types of evaluation we describe are suitable

for medium and large-scale projects but may not be cost-effective for small projects.

 Key personnel availability. It is imperative to secure the time of the architect or at least

someone who can speak authoritatively about the system's architecture and design. This

person (or these people) primarily should be able to communicate the facts of the

architecture quickly and clearly as well as the motivation behind the architectural

decisions.

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-II

IV B. Tech I Semester (R16) 2019-20 2

 Competent evaluation team. Ideally, software architecture evaluation teams are separate

entities within a corporation, and must be perceived as impartial, objective, and

respected. The team must be seen as being composed of people appropriate to carry out

the evaluation, so that the project personnel will not regard the evaluation as a waste of

time and so that its conclusions will carry weight.

 Managed expectations. Critical to the evaluation's success is a clear, mutual

understanding of the expectations of the organization sponsoring it. The evaluation

should be clear about what its goals are, what it will produce, what areas it will (and will

not) investigate, how much time and resources it will take from the project, and to whom

the results will be delivered.

2. Architecture Tradeoff Analysis Method (ATAM)

The ATAM is so named because it reveals how well architecture satisfies particular quality

goals, and it provides insight into how quality goals interact? That is, how they trade off. The

ATAM is designed to elicit the business goals for the system as well as for the architecture. It is

also designed to use those goals and stakeholder participation to focus the attention of the

evaluators on the portion of the architecture that is central to the achievement of the goals.

2.1 Participants in the ATAM:

The ATAM requires the participation and mutual cooperation of three groups:

 The evaluation team: This group is external to the project whose architecture is being

evaluated. It usually consists of three to five people. Each member of the team is assigned

a number of specific roles to play during the evaluation.

 Project decision makers: These people are empowered to speak for the development

project or have the authority to mandate changes to it. They usually include the project

manager, and, if there is an identifiable customer who is footing the bill for the

development, he or she will be present (or represented) as well.

 Architecture stakeholders: Stakeholders have a vested interest in the architecture

performing as advertised. They are the ones whose ability to do their jobs hinges on the

architecture promoting modifiability, security, high reliability, or the like. Stakeholders

include developers, testers, integrators, maintainers, performance engineers, users,

builders of systems interacting with the one under consideration, and others.

Role Responsibilities Desirable characteristics

Team Leader

Sets up the evaluation; coordinates with

client, making sure client's needs are

met; establishes evaluation contract;

Well-organized, with managerial

skills; good at interacting with

client; able to meet deadlines

Evaluation Leader

Runs evaluation; facilitates elicitation of

scenarios; Administers scenario

selection/prioritization process;

Comfortable in front of

audience; excellent facilitation

skills; good understanding of

architectural issues

Scenario Scribe
Writes scenarios on flipchart or

whiteboard during scenario elicitation;

Good handwriting; stickler about

not moving on before an idea

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-II

IV B. Tech I Semester (R16) 2019-20 3

captures agreed-on wording of each

scenario, halting discussion until exact

wording is captured

(scenario) is captured; can

absorb and distill the essence of

technical discussions

Proceedings Scribe

Captures proceedings in electronic form

on laptop or workstation, raw scenarios,

issue(s) that motivate each scenario

Good, fast typist; well organized

for rapid recall of information;

good understanding of

architectural issues;

Timekeeper

Helps evaluation leader stay on schedule;

helps control amount of time devoted to

each scenario during the evaluation

phase

Willing to interrupt discussion to

call time

Process Observer

Keeps notes on how evaluation process

could be improved or deviated from;

usually keeps silent but may make

discreet process-based suggestions to the

evaluation leader during the evaluation;

Thoughtful observer;

knowledgeable in the evaluation

process; should have previous

experience in the architecture

evaluation method

Process Enforcer

Helps evaluation leader remember and

carry out the steps of the evaluation

method

Fluent in the steps of the method,

and willing and able to provide

discreet guidance to the

evaluation leader

Questioner

Raise issues of architectural interest that

stakeholders may not have thought of

Good architectural insights; good

insights into needs of

stakeholders; experience with

systems in similar domains;

unafraid to bring up contentious

issues and pursue them; familiar

with attributes of concern

2.2 Outputs of the ATAM:

1. A concise presentation of the architecture. The architecture is presented in one hour

2. Articulation of the business goals. Frequently, the business goals presented in the ATAM

are being seen by some of the assembled participants for the first time and these are

captured in the outputs.

3. Prioritized quality attribute requirements expressed as quality attribute scenarios.

4. A set of risks and non-risks.

 A risk is defined as an architectural decision that may lead to undesirable

consequences in light of quality attribute requirements.

 A non-risk is an architectural decision that, upon analysis, is deemed safe.

 The identified risks form the basis for an architectural risk mitigation plan.

5. A set of risk themes. When the analysis is complete, the evaluation team examines the

full set of discovered risks to look for overarching themes that identify systemic

weaknesses in the architecture or even in the architecture process and team. If left

untreated, these risk themes will threaten the project’s business goals.

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-II

IV B. Tech I Semester (R16) 2019-20 4

6. Mapping of architectural decisions to quality requirements. For each quality attribute

scenario examined during an ATAM, those architectural decisions that help to achieve it

are determined and captured.

7. A set of identified sensitivity and tradeoff points. These are architectural decisions that

have a marked effect on one or more quality attributes.

2.3 Phases of the ATAM: Activities in an ATAM-based evaluation are spread out over four

phases.

Phase Activity Participants Typical duration

0

Partnership and preparation:

Logistics, planning,

stakeholder recruitment,

team formation

Evaluation team leadership and

key project decision-makers

Proceeds informally as

required, perhaps over

a few weeks

1 Evaluation: Steps 1-6
Evaluation team and project

decision-makers

1-2 days followed by a

hiatus of 2-3 weeks

2 Evaluation: Steps 7-9
Evaluation team, project

decision makers, stakeholders
2 days

3

Follow-up: Report

generation and delivery,

process improvement

Evaluation team and evaluation

client
1 week

2.4 Steps of the Evaluation Phases

1. Present the ATAM (0 hours): Participants already familiar with process.

2. Present business drivers (0.25 hours): The participants are expected to understand the

system and its business goals and their priorities. A brief review ensures that these are fresh in

everyone’s mind and that there are no surprises.

3. Present architecture (0.5 hours): All participants are expected to be familiar with the

system. A brief overview of the architecture, using at least module and C&C views, is presented.

1-2 scenarios are traced through these views.

4. Identify architectural approaches (0.25 hours): The architecture approaches for specific

quality attribute concerns are identified by the architect. This may be done as a portion of step 3.

5. Generate QA utility tree (0.5-1.5hours): Scenarios might exist: part of previous evaluations,

part of design, part of requirements elicitation. Put these in a tree. Or, a utility tree may already

exist.

6. Analyze architectural approaches (2-3 hours): This step—mapping the highly ranked

scenarios onto the architecture—consumes the bulk of the time and can be expanded or

contracted as needed.

7. Brainstorm scenarios (0 hours): This step can be omitted as the assembled (internal)

stakeholders are expected to contribute scenarios expressing their concerns in step 5.

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-II

IV B. Tech I Semester (R16) 2019-20 5

8. Analyze architectural approaches (0 hours): This step is also omitted, since all analysis is

done in step 6.

9. Present results (0.5 hours): At the end of an evaluation, the team reviews the existing and

newly discovered risks, non-risks, sensitivities, and tradeoffs and discusses whether any new risk

themes have arisen.

3. Cost Benefit Analysis Method (CBAM)

The software architect or decision maker wishes to maximize the difference between the benefit

derived from the system and the cost of implementing the design. The CBAM begins where the

ATAM concludes and, in fact, depends upon the artifacts that the ATAM produces as output.

Figure 1 depicts the context for the CBAM.

Figure 1: Depicts the context for the CBAM

Implementing the CBAM

A process flow diagram for the CBAM is given in Figure 12.3. The first four steps are annotated

with the relative number of scenarios they consider. That number steadily decreases, ensuring

that the method concentrates the stakeholders' time on the scenarios believed to be of the greatest

potential in terms of ROI.

Step 1: Collate scenarios: Collate the scenarios elicited during the ATAM exercise, and give

the stakeholders the chance to contribute new ones. Prioritize these scenarios based on satisfying

the business goals of the system and choose the top one-third for further study.

Step 2: Refine scenarios: Refine the scenarios output from step 1, focusing on their stimulus-

response measures. Elicit the worst-case, current, desired, and best-case quality attribute

response level for each scenario.

Step 3: Prioritize scenarios: Allocate 100 votes to each stakeholder and have them distribute

the votes among the scenarios, where their voting is based on the desired response value for each

scenario. Total the votes and choose the top 50% of the scenarios for further analysis. Assign a

weight of 1.0 to the highest-rated scenario; assign the other scenarios a weight relative to the

highest rated. This becomes the weighting used in the calculation of a strategy's overall benefit.

Make a list of the quality attributes that concern the stakeholders.

Step 4: Assign utility: Determine the utility for each quality attribute response level (worst-case,

current, desired, and best-case) for the scenarios from step 3.

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-II

IV B. Tech I Semester (R16) 2019-20 6

Step 5: Develop architectural strategies for scenarios and determine their expected quality

attribute response levels: Develop (or capture already developed) architectural strategies that

address the chosen scenarios and determine the "expected" quality attribute response levels that

will result from them. Given that an architectural strategy may have effects on multiple

scenarios, we must perform this calculation for each scenario affected.

Step 6: Determine the utility of the "expected" quality attribute response levels by

interpolation: Using the elicited utility values (that form a utility curve), determine the utility of

the expected quality attribute response level for the architectural strategy. Do this for each

relevant quality attribute enumerated in step 3.

Step 7: Calculate the total benefit obtained from an architectural strategy: Subtract the

utility value of the "current" level from the expected level and normalize it using the votes

elicited in step 3. Sum the benefit due to a particular architectural strategy across all scenarios

and across all relevant quality attributes.

Step 8: Choose architectural strategies based on ROI subject to cost and schedule

constraints: Determine the cost and schedule implications of each architectural strategy.

Calculate the ROI value for each as a ratio of benefit to cost. Rank-order the architectural

strategies according to the ROI value and choose the top ones until the budget or schedule is

exhausted.

Step 9: Confirm results with intuition: For the chosen architectural strategies, consider

whether these seem to align with the organization's business goals. If not, consider issues that

may have been overlooked while doing this analysis. If there are significant issues, perform

another iteration of these steps.

4. SOFTWARE PRODUCT LINES

Software architecture represents a significant investment of time and effort, usually by senior

talent. So it is natural to want to maximize the return on this investment by re-using architecture

across multiple systems. Architecturally mature organizations tend to treat their architectures as

valuable intellectual property and look for ways in which that property can be leveraged to

produce additional revenue and reduce costs. Both are possible with architecture re-use.

Software product lines based on inter-product commonality represent an innovative, growing

concept in software engineering. Every customer has its own requirements, which demand

flexibility on the part of the manufacturers. Software product lines simplify the creation of

systems built specifically for particular customers or customer groups.

The improvements in cost, time to market, and productivity that come with a successful product

line can be breathtaking. Consider:

 Nokia is able to produce 25 to 30 different phone models per year (up from 4 per year)

because of the product line approach.

 Cummins, Inc., was able to reduce the time it takes to produce the software for a diesel

engine from about a year to about a week.

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-II

IV B. Tech I Semester (R16) 2019-20 7

 Motorola observed a 400% productivity improvement in a family of one-way pagers.

 Hewlett-Packard reported a time to market reduced by a factor of seven and a

productivity increase of a factor of six in a family of printer systems.

Creating a successful product line depends on a coordinated strategy involving software

engineering, technical management, and organization management.

Architectures for Product Lines: A product line architect needs to consider three things:

1. Identifying variation points: Identifying variation is an ongoing activity. Because of the

many ways a product can vary, variants can be identified at virtually any time during the

development process. Some variations are identified during product line requirements

elicitation; others, during architecture design; and still others, during implementation.

Variations may also be identified during implementation of the second (and subsequent)

products as well.

2. Supporting variation points: In a conventional architecture, the mechanism for achieving

different instances almost always comes down to modifying the code. But in a software

product line, architectural support for variation can take many forms:

Inclusion or omission of elements: This decision can be reflected in the build

procedures for different products, or the implementation of an element can be

conditionally compiled based on some parameter indicating its presence or absence.

Inclusion of a different number of replicated elements: For instance, high-capacity

variants might be produced by adding more servers? The actual number should be

unspecified, as a point of variation. Again, a build file would select the number

appropriate for a particular product.

3. Evaluating the architecture for product line suitability: Like any other, the

architecture for a software product line should be evaluated for fitness of purpose. In fact,

given the number of systems that will rely on it, evaluation takes on an even more

important role for product line architecture.

The good news is that the evaluation techniques described earlier in this book work well

for product line architectures. The architecture should be evaluated for its robustness and

generality, to make sure it can serve as the basis for products in the product line's

envisioned scope. It should also be evaluated to make sure it meets the specific

behavioral and quality requirements of the product at hand. We begin by focusing on the

and how of the evaluation and then turn to when it should take place.

What and How to Evaluate: The evaluation will have to focus on the variation points to

make sure they are appropriate, that they offer sufficient flexibility to cover the product

line's intended scope, that they allow products to be built quickly, and that they do not

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-II

IV B. Tech I Semester (R16) 2019-20 8

impose unacceptable runtime performance costs. If your evaluation is scenario based,

expect to elicit scenarios that involve instantiating the architecture to support different

products in the family. Also, different products in the product line may have different

quality attribute requirements, and the architecture will have to be evaluated for its ability

to provide all required combinations. Here again, try to elicit scenarios that capture the

quality attributes required of family members.

When to Evaluate: An evaluation should be performed on an instance or variation of the

architecture that will be used to build one or more products in the product line. The extent

to which this is a separate, dedicated evaluation depends on the extent to which the

product architecture differs in quality-attribute-affecting ways from the product line

architecture. If it does not differ, the product line architecture evaluation can be

abbreviated; since many of the issues normally be raised in a single product evaluation

will have been dealt with in the product line evaluation. In fact, just as the product

architecture is a variation of the product line architecture, the product architecture

evaluation is a variation of the product line architecture evaluation. Therefore, depending

on the evaluation method used, the evaluation artifacts (scenarios, checklists, etc.) will

have re-use potential, and you should create them with that in mind. The results of

evaluation of product architectures often provide useful feedback to the product line

architects and fuel architectural improvements.

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-II

IV B. Tech I Semester (R16) 2019-20 9

5. BUILDING SYSTEMS FROM OFF THE SHELF COMPONENTS

Consider the following situation. You are producing software to control a chemical plant. Within

chemical plants, specialized displays keep the operator informed as to the state of the reactions

being controlled. A large portion of the software you are constructing is used to draw those

displays. A vendor sells user interface controls that produce them. Because it is easier to buy

than build, you decide to purchase the controls? Which, by the way, are only available for Visual

Basic?

What impact does this decision have on your architecture? Either the whole system must be

written in Visual Basic with its built-in callback-centered style or the operator portion must be

isolated from the rest of the system in some fashion. This is a fundamental structural decision,

driven by the choice of a single component for a single portion of the system.

The use of off-the-shelf components in software development, while essential in many cases,

also introduces new challenges. In particular, component capabilities and liabilities are a

principle architectural constraint.

All but the simplest components have a presumed architectural pattern that is difficult to violate.

For example, an HTTP server assumes a client-server architectural pattern with defined

interfaces and mechanisms for integrating back-end functionality. If the architecture you design

conflicts with the architecture assumed by an HTTP server component, you may find yourself

with an exceptionally difficult integration task.

A prototype situated in a specific design context is called a model solution. A model problem

may have any number of model solutions, depending on the severity of risk inherent in the

design context and on the success of the model solutions in addressing it.

Model problems are normally used by design teams. Optimally, the design team consists of an

architect who is the technical lead on the project and makes the principal design decisions, as

well as a number of designers/engineers who may implement a model solution for the model

problem.

An illustration of the model problem work flow is shown in Figure 2. The process consists of the

following six steps that can be executed in sequence:

 The architect and the engineers identify a design question. The design question initiates

the model problem, referring to an unknown that is expressed as a hypothesis.

 The architect and the engineers define the starting evaluation criteria. These criteria

describe how the model solution will support or contradict the hypothesis.

 The architect and the engineers define the implementation constraints. The

implementation constraints specify the fixed (inflexible) part of the design context that

governs the implementation of the model solution. These constraints might include such

things as platform requirements, component versions, and business rules.

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-II

IV B. Tech I Semester (R16) 2019-20 10

 The engineers produce a model solution situated in the design context. The model

solution is a minimal application that uses only the features of a component (or

components) necessary to support or contradict the hypothesis.

 The engineers identify ending evaluation criteria. Ending evaluation criteria include the

starting set plus criteria that are discovered as a by-product of implementing the model

solution.

 The architect performs an evaluation of the model solution against the ending criteria.

The evaluation may result in the design solution being rejected or adopted, but often

leads to new design questions that must be resolved in similar fashion.

Figure 2: Model problem work flow

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-II

IV B. Tech I Semester (R16) 2019-20 11

6. SOFTWARE ARCHITECTURE IN FUTURE

The history of programming can be viewed as a succession of ever-increasing facilities for

expressing complex functionality. In the beginning, assembly language offered the most

elementary of abstractions: exactly where in physical memory things resided (relative to the

address in some base register) and the machine code necessary to perform primitive arithmetic

and move operations.

The 1970s saw a concern with the structuring of programs to achieve qualities beyond correct

function. Data-flow analysis, entity-relation diagrams, information hiding, and other principles or

techniques formed the bases of myriad design methodologies, each of which led to the creation

of subroutines or collections of them whose functionality could be rationalized in terms of

developmental qualities. These elements were usually called modules.

In the 1980s, module-based programming languages, information hiding, and associated

methodologies crystallized into the concept of objects. Objects became the components du jour,

with inheritance adding a new kind of (non-runtime) connector.

In the 1990s, standard object-based architectures, in the form of frameworks, started appearing.

Objects have given us a standard vocabulary for elements and have led to new infrastructures for

wiring collections of elements together. Abstractions have grown more powerful along the way;

we now have computing platforms in our homes that let us treat complex entities, such as

spreadsheets, documents, graphical images, audio clips, and databases, as interchangeable black-

box objects that can be blithely inserted into instances of each other.

Architecture places the emphasis above individual elements and on the arrangement of the

elements and their interaction. It is this kind of abstraction, away from the focus on individual

elements that makes such breathtaking interoperability possible.

In the current decade, we see the rise of middleware and IT architecture as a standard platform.

Purchased elements have security, reliability, and performance support services that a decade ago

had to be added by individual project developers. We summarize this discussion in Figure 3.

.

Figure 3: Growth in the types of abstraction available over time

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-II

IV B. Tech I Semester (R16) 2019-20 12

Frequently Asked questions

1. Explain about various architecture Evaluation approaches?

2. Explain the participant of ATAM with their roles, responsibilities and characteristics?

3. Write a short note on outputs of ATAM and phases of ATAM?

4. Explain the evaluation steps of ATAM?

5. Briefly explain about Cost Benefit Analysis Method (CBAM) and evaluation steps?

6. Explain about Software Product Lines with suitable examples?

7. Explain in detail about building systems from off the shelf components with examples?

8. Write about Software architecture in future?

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-III

IV B. Tech I Semester (R16) 2019-20 1

UNIT-III:

Patterns: Pattern Description, Organizing catalogs, role in solving design problems, Selection

and usage. Creational Patterns: Abstract factory, Builder, Factory method, Prototype, Singleton

1. Introduction to design patterns or what is a design pattern (DP)?

Design patterns are repeatable / reusable solutions to commonly occurring problems in a certain

context in software design. There are four essential elements of a pattern,

 Pattern name

 Problem

 Solution

 Consequences

Need for design patterns

 Designing reusable object-oriented software (API’s) is hard.

 Experienced designers Vs novice designers.

 Patterns make object-oriented software flexible, elegant and reusable.

 Solved a problem previously but don’t remember when or how?

Use of design patterns

 Make it easier to reuse successful designs and architectures.

 Make it easy for the new developers to design software.

 Allows choosing different design alternatives to make the software reusable

 Helps in documenting and maintaining the software

Why should we use DP’s?

 These are already tested and proven solutions used by many experienced designers.

MVC Architecture

Model View Controller or MVC as it is popularly called, is a software design pattern for

developing web applications. A Model View Controller pattern is made up of the following three

parts.

 Model − the lowest level of the pattern which is responsible for maintaining data

 View − this is responsible for displaying all or a portion of the data to the user

 Controller − Software Code that controls the interactions between the Model and View

MVC is popular as it isolates the application logic from the user interface layer and supports

separation of concerns. Here the Controller receives all requests for the application and then

works with the Model to prepare any data needed by the View. The View then uses the data

prepared by the Controller to generate a final presentable response. The MVC abstraction can be

graphically represented as follows.

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-III

IV B. Tech I Semester (R16) 2019-20 2

Describing design patterns

1. Pattern name and classification

2. Intent

3. Also known as

4. Motivation

5. Applicability

6. Structure

7. Participants

8. Collaborations

9. Consequences

10. Implementation

11. Sample code

12. Known uses

13. Related patterns

Organizing catalogs

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-III

IV B. Tech I Semester (R16) 2019-20 3

2. ABSTRACT FACTORY: Provides an interface to create a family of related objects, without

explicitly specifying their concrete class.

 Pattern name and classification

Intent: Provide an interface for creating families of related or dependent objects without

specifying their concrete classes.

Also known as: Kit

Motivation: Creating interface components for different look and feels.

Applicability

We should use Abstract Factory design pattern when:

 The system needs to be independent of the products it works with are created.

 The system should be configured to work with multiple families of products.

 A family of products is designed to be used together and this constraint is needed to be

enforced.

 A library of products is to be provided and only their interfaces are to be revealed but not

their implementations.

Structure

Participants: The classes that participate in the Abstract Factory are: AbstractFactory,

ConcreteFactory, AbstractProduct, Product, Client

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-III

IV B. Tech I Semester (R16) 2019-20 4

Collaborations

 The ConcreteFactory class creates products objects having a particular implementation.

To create different product, the client should use a different concrete factory.

 AbstractFactory defers creation of product objects to its ConcreteFactory subclass.

Consequences

 It isolates concrete classes.

 It makes exchanging product families easy.

 It creates consistency among products.

Implementation

abstract class AbstractProductA

{

 public abstract void operationA1();

 public abstract void operationA2();

}

Sample code

public interface Window

{

 public void setTitle(String text);

 public void repaint();

}

Known uses

ET++ [WGM88] uses the Abstract Factory pattern to achieve portability across different window

systems (X Windows and SunView, for example).

Related patterns

 AbstractFactory classes are often implemented with factory methods but they can also be

implemented using Prototype.

 A concrete factory is often a Singleton.

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-III

IV B. Tech I Semester (R16) 2019-20 5

3. BUILDER

Pattern name and classification: Builder and Creational

Intent: Separate the construction of a complex object from its representation so that the same

construction process can create different representations.

Also known as

Motivation: Text Converter

Applicability

 The algorithm for creating a complex object should be independent of the parts that make

up the object and how they are assembled.

 The construction process must allow different representations for the object that is

constructed.

Structure

Participants: Builder, ConcreteBuilder, Director, Product

Collaborations

 The client creates the Director Object and configures it with the desired Builder object.

 Director notifies the builder whenever a part o f the product should be built.

 Builder handles requests from the director and adds parts to the product.

 The client retrieves the product from the builder.

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-III

IV B. Tech I Semester (R16) 2019-20 6

Consequences: The benefits and pitfalls of Builder pattern are:

 It lets you vary the product’s internal representation.

 It isolates code for construction and representation.

 It gives you finer control over the construction process.

Implementation

//Abstract Builder

class abstract class TextConverter

{

 abstract void convertCharacter(char c);

 abstract void convertParagraph();

}

// Product

class ASCIIText

{

 public void append(char c)

 { //Implement the code here }

}

Sample code

abstract class AbstractProduct implements Cloneable

{

 public static AbstractProduct thePrototype;

 public static AbstractProduct makeProduct()

 {

 try

 {

 return (AbstractProduct) thePrototype.clone();

 }

 catch(CloneNotSupportedException e)

 {

 return null;

 }

 }

}

Known uses

The RTF converter application is from ET++ [WGM88]. Its text building block uses a builder to

process text stored in the RTF format.

Related patterns

 Abstract Factory (87) is similar to Builder in that it too may construct complex objects.

The primary difference is that the Builder pattern focuses on constructing a complex

object step by step.

 A Composite (1 i6s3) what the builder often builds.

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-III

IV B. Tech I Semester (R16) 2019-20 7

4. FACTORY METHOD

Pattern name and classification: Factory method and Creational

Intent: Define an interface for creating an object, but let subclasses decide which

Also known as: Virtual Constructor

Motivation: Frameworks use abstract classes to define and maintain relationships between

objects. A framework is often responsible for creating these objects as well.

Applicability: Use the Factory Method pattern when

 A class can't anticipate the class of objects it must create.

 A class wants its subclasses to specify the objects it creates.

 Classes delegate responsibility to one of several helper subclasses, and you want to

localize the knowledge of which helper subclass is the delegate.

Structure

Participants: Product, ConcreteProduct, Creator, ConcreteCreator

Collaborations: Creator relies on its subclasses to define the factory method so that it returns an

instance of the appropriate ConcreteProduct.

Consequences: Here are two additional consequences of the Factory Method pattern

 Provides hooks for subclasses

 Connects parallel class hierarchies

Implementation

abstract class AbstractProduct implements Cloneable

{

 public static AbstractProduct thePrototype;

 public static AbstractProduct makeProduct()

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-III

IV B. Tech I Semester (R16) 2019-20 8

 {

 try

 {

 return (AbstractProduct) thePrototype.clone();

 }

 catch(CloneNotSupportedException e)

 {

 return null;

 }

 }

}

Sample code

class MazeGame { public:

Maze* CreateMaze();

// factory methods:

virtual Maze* MakeMaze() const

{ return new Maze; }

virtual Room* MakeRoom(int n) const

{ return new Room(n); }

virtual Wall* MakeWall() const

{ return n ew Wall; }

virtual Door* MakeDoor(Room* rl, Room* r2) const

{ return new Door(rl, r2); } };

Known uses

Factory methods pervade toolkits and framework s.The preceding document example is a typical

use in MacApp and ET++. The manipulator example is from Unidraw.

Related patterns

 Abstract Factory is often implemented with factory methods. as well.

 Factory methods are usually called within Template Methods

 Prototypes don't require subclassing Creator.

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-III

IV B. Tech I Semester (R16) 2019-20 9

5. PROTOTYPE

Pattern name and classification: Prototype and Creational

Intent: Specify the kinds of objects to create using a prototypical instance, and create new

objects by copying this prototype.

Also known as:
Motivation: You could build an editor for music scores by customizing a general framework for

graphical editors and adding new objects that represent notes, rests, and staves.

Applicability: Use the Prototype pattern when a system should be independent of how its

products are created, composed, and represented; and

 when the classes to instantiate are specified at run-time, for example, by dynamic loading

; or

 to avoid building a class hierarchy of factories that parallels the class hierarchy of

products; or

 When instances of a class can have one of only a few different combinations of state. It

may be more convenient to install a corresponding number of prototypes and clone them

rather than instantiating the class manually, each time with the appropriate state.

Structure

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-III

IV B. Tech I Semester (R16) 2019-20 10

Participants: Prototype, ConcretePrototype, Client

Collaborations: A client asks a prototype to clone itself

Consequences: Additional benefits of the Prototype pattern are listed below.

 Adding and removing products at run-time

 Specifying new objects by varying values

 Specifying new objects by varying structure

 Reduced sub classing

 Configuring an application with classes dynamically

Implementation: Configuring an application with classes dynamically

 Using a prototype manager

 Implementing the Clone operation

 Initializing clones

Sample code

class MazePrototypeFactory : public MazeFactory

{

public:

MazePrototypeFactory (Maze*, Wall*, Room*, Door*),-

virtual Maze* MakeMaze() const;

virtual Room* MakeRoom(int) const;

virtual Wall* MakeWall() const;

virtual Door* MakeDoor(Room*, Room*) const;

private:

Maze* _prototypeMaze;

Room* _prototypeRoom;

Wall* _prototypeWall;

Door* _prototypeDoor;

};

Known uses

 The first widely known application o f the pattern in an objectoriented language was in

ThingLab, where users could form a composite object and then promote it to a prototype

by installing it in a library of reusable objects

Related patterns

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-III

IV B. Tech I Semester (R16) 2019-20 11

 Prototype and Abstract Factory are competing patterns in some ways

 Designs that make heavy use of the Composite and Decorator patterns often can benefit

from Prototype as well.

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-III

IV B. Tech I Semester (R16) 2019-20 12

6. SINGLETON

Pattern name and classification

Intent: Ensure a class only has one instance, and provide a global point of access to it

Also known as

Motivation: It's important for some classes to have exactly one instance. Although there can be

many printers in a system, there should be only one printer spooler. There should be only one file

system and one window manager. A digital filter will have one A/D converter. An accounting

system will be dedicated to serving one company.

Applicability: Use the Singleton pattern when

 There must be exactly one instance of a class, and it must be accessible to clients from a

well-known access point.

 When the sole instance should be extensible by sub classing, and clients should be able to

use an extended instance without modifying their code.

Structure

Participants

 Defines an Instance operation that lets clients access its unique instance. Instance is a

class operation (that i s, a class method in Smalltalk and a static member function in

C++).

 May be responsible for creating its own unique instance

Collaborations: Clients access a Singleton instance solely through Singleton's Instance

operation.

Consequences: The Singleton pattern has several benefits

 Controlled access to sole instance

 Reduced name space

 Permits refinement of operations and representation

 Permits a variable number of instances

 More flexible than class operations

Implementation: The Singleton class is declared as

class Singleton

{

public:

static Singleton* Instance();

protected:

Singleton();

private:

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-III

IV B. Tech I Semester (R16) 2019-20 13

static Singleton* _instance;

};

The corresponding implementation is

Singleton* Singleton::_instance = 0;

Singleton* Singleton::Instance () {

if (_instance == 0) {

_instance = new Singleton;

}

return _instance;

}

Sample code

class MazeFactory

{

public:

static MazeFactory* Instance();

// existing interface goes here

protected:

MazeFactory();

private:

static MazeFactory* _instance;

};

The corresponding implementation is

MazeFactory* MazeFactory::_instance = 0;

MazeFactory* MazeFactory::Instance ()

 {

if (_instance ==0) {

_instance = new MazeFactory;

} return _

instance;

}

Known uses

 An example of the Singleton pattern in Smalltalk-80

 The Interviews user interface toolkit use s the Singleton pattern to access the unique

instance of its Session and WidgetKit classes, among others.

Related patterns

 Many patterns can be implemented using the Singleton pattern. See Abstract Factory,

Builder, and Prototype.

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-III

IV B. Tech I Semester (R16) 2019-20 14

Frequently Asked Questions

1. Define Design Patterns and explain about MVC architecture?

2. Give detailed information of design patterns catalog?

3. Describe about the Abstract Factory design pattern?

4. Write a short note on Builder design pattern?

5. Explain the working of Factory design pattern?

6. Briefly explain about Prototype design pattern?

7. Describe in detail about Singleton design pattern?

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-IV

IV B. Tech I Semester (R16) 2019-20 1

UNIT-IV:

Structural Patterns: Adapter, Bridge, Composite, Decorator, Façade, Flyweight, PROXY.

Structural patterns are concerned with how classes and objects are composed to form larger

structures. Structural class patterns use inheritance to compose interfaces or implementations. As

a simple example, consider how multiple inheritances mix two or more classes into one. The

result is a class that combines the properties of its parent classes. This pattern is particularly

useful for making independently developed class libraries work together.

 Adapter: interface converter

 Bridge: decouple abstraction from its implementation

 Composite: compose objects into tree structures, treating all nodes uniformly

 Decorator: attach additional responsibilities dynamically

 Façade: provide a unified interface to a subsystem

 Flyweight: using sharing to support a large number of fine-grained objects efficiently

 Proxy: provide a surrogate for another object to control access

1. Adapter

Intent: Convert the interface of a class into another interface clients expect. Adapter lets classes

work together that couldn’t otherwise because of incompatible interfaces.

Also Known As: Wrapper

Motivation: Sometimes a toolkit class that's designed for reuse isn't reusable only because its

interface doesn't match the domain-specific interface an application requires.

Consider for example a drawing editor that lets users draw and arrange graphical elements (lines,

polygons, text, etc.) into pictures and diagrams. The drawing editor's key abstraction is the

graphical object, which has an editable shape and can draw itself. The interface for graphical

objects is defined by an abstract class called Shape. The editor defines a subclass of Shape for

each kind of graphical object: a LineShape class for lines, a PolygonShape class for polygons,

and so forth.

Applicability

Use the Adapter pattern when

• You want to use an existing class, and its interface does not match the one you need.

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-IV

IV B. Tech I Semester (R16) 2019-20 2

• You want to create a reusable class that cooperates with unrelated or unforeseen classes, that is,

classes that don't necessarily have compatible interfaces.

Structure

A class adapter uses multiple inheritances to adapt one interface to another:

An object adapter relies on object composition:

Participants

• Target (Shape): defines the domain-specific interface that Client uses.

• Client (DrawingEditor): collaborates with objects conforming to the Target interface.

• Adaptec (TextView): Defines an existing interface that needs adapting.

• Adapter (TextShape): Adapts the interface of Adaptec to the Target interface.

Collaborations

• Clients call operations on an Adapter instance. In turn, the adapter calls Adaptec operations that

carry out the request.

Consequences: Class and object adapters have different trade-offs. A class adapter

• adapts Adaptee to Target by committing to a concrete Adaptee class. As a consequence, a class

adapter won't work when we want to adapt a class and all its subclasses.

• Lets Adapter override some of Adaptee's behavior, since Adapter i s a subclass of Adaptee.

Implementation: Although the implementation of Adapter is usually straightforward, here are

some issues to keep in mind:

 Implementing class adapters in C++. In a C++ implementation of a class adapter,

Adapter would inherit publicly from Target and privately from Adaptec. Thus Adapter

would be a subtype of Target but not of Adaptec.

 Pluggable adapters. Let's look at three ways to implement pluggable adapters for the

TreeDisplay widget described earlier, which can lay out and display a hierarchical

structure automatically.

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-IV

IV B. Tech I Semester (R16) 2019-20 3

Sample Code

We'll give a brief sketch of the implementation of class and object adapter s for the Motivation

example begi nni ng with the classes Shape and TextView.

Class Shape {

public:

Shape ();

virtual void BoundingBox(

Point& bottomLeft, Point& topRight

} const;

virtual Manipulator* CreateManipulator () const;

 }:

class TextView {

public:

TextView();

void GetOrigin(Coord& x, Coord& y) const;

void GetExtent(Coord& width, Coord& height) const;

virtual bool IsEmpty() const;

};

Known Uses

The Motivation example comes from ET++Draw, a drawing application based on ET++.

Related Patterns

 Bridge has a structure similar to an object adapter, but Bridge has a different intent:

 Decorator enhances another object without changing its interface. A decorator is thus

more transparent to the application than an adapter is.

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-IV

IV B. Tech I Semester (R16) 2019-20 4

2. Bridge

Intent

Decouple an abstraction from its implementation so that the two can vary independently.

Also Known As

Handle/Body

Motivation

When an abstraction can have one of several possible implementation s, the usual way to

accommodate them is to use inheritance.

Applicability: Use the Bridge pattern when

• You want to avoid a permanent binding between an abstraction and its implementation. This

might be the case, for example, when the implementation must be selected or switched at run-

time.

• Both the abstractions and their implementations should be extensible by sub classing. In this

case, the Bridge pattern lets you combine the different abstractions and implementations and

extend them independently.

• Changes in the implementation of an abstraction should have no impact on clients; that is, their

code should not have to be recompiled.

Structure

Participants

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-IV

IV B. Tech I Semester (R16) 2019-20 5

• Abstraction (Window): Defines the abstraction's interface. Maintains a reference to an object of

type Implementor.

• RefinedAbstraction (IconWindow): Extends the interface defined by Abstraction.

• Implementor (Windowlmp): Defines the interface for implementation classes. This interface

doesn't have to correspond exactly to Abstraction's interface; in fact the two interfaces can be

quite different. Typically the Implementor interface provides only primitive operations, and

Abstraction defines higher-level operations based on these primitives.

• Concretelmplementor (XWindowImp, PMWindowImp)

- implements the Implementor interface and defines its concrete implementation.

Collaborations

• Abstraction forwards client requests to its Implementor object.

Consequences: The Bridge pattern has the following consequences:

1. Decoupling interface and implementation. An implementation is not bound permanently

to an interface. The implementation of an abstraction can be configured at run-time. It's

even possible for an object to change its implementation at run-time.

2. Improved extensibility. You can extend the Abstraction and Implementor hierarchies

independently.

Sample Code: The following C+ + code implemen ts t heWindow/Windowlm pexample from

the Motivation section. The Window class defines the window abstraction for client applications:

Class Window {

public:

Window(View* contents); /' / requests handled by window

virtual void DrawContents();

virtual void Open();

virtual void Close();

virtual void IconifyO;

virtual void Deiconify();

// requests forwarded to implementation

virtual void SetOrigin(const Points at);

virtual void SetExtent(const Point& extent);

virtual void Raise();

virtual void Lower();

virtual void DrawLine(const Point&, const Point&);

virtual void DrawRect(const Point&, const Point&);

virtual void DrawPolygon(const Point[], int n);

virtual void DrawText(const char*, const Point&);

protected:

Windowlmp* GetWindowImp();

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-IV

IV B. Tech I Semester (R16) 2019-20 6

View* GetView();

private:

Windowlmp* _imp;

View* _contents; // the window's contents

};

Related Patterns

 An Abstract Factory can create and configure a particular Bridge.

 The Adapter pattern is geared toward making unrelated classes work together.

3. Composite

Intent

Compose objects into tree structures to represent part-whole hierarchies. Composite lets clients

treat individual objects and compositions of objects uniformly.

Motivation

Graphics applications like drawing editors and schematic capture systems let users build

complex diagrams out of simple components.

Applicability

Use the Composite pattern when

 You want to represent part-whole hierarchies of objects

 You want clients to be able to ignore the difference between compositions of objects and

individual objects. Clients will treat all objects in the composite structure uniformly.

Structure

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-IV

IV B. Tech I Semester (R16) 2019-20 7

Participants

 Component (Graphic)

 Leaf (Rectangle, Line)

 Composite (Picture)

 Client

Collaborations

 Clients use the Component class interface to interact with objects in the composite

structure. If the recipient is a Leaf, then the request is handled directly.

 If the recipient is a Composite, then it usually forwards requests to its child components,

possibly performing additional operations before and/or after forwarding.

Consequences: The Composite pattern

 Defines class hierarchies consisting of primitive objects and composite objects. Primitive

objects can be composed into more complex objects, which in turn can be composed, and

so on recursively.

 Makes the client simple. Clients can treat composite structures and individual objects

uniformly. Clients normally don't know (and shouldn't care) whether they're dealing with

a leaf or a composite component.

Implementation: There are many issues to consider when implementing the Composite pattern:

1. Explicit parent references. Maintaining references from child components to their parent

ca n simpli fy the traversal and management of a composite structure.

2. Sharing components. It's often useful to share components, for example, to reduce storage

requirements.

Sample Code

Equipment class defines an interface for all equipment in the part-whole hierarchy.

Class Equipment

{

public:

Virtual "Equipment ();

Const char* Name () {return _name; }

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-IV

IV B. Tech I Semester (R16) 2019-20 8

Virtual Watt Power ();

Virtual Currency NetPrice ();

Virtual Currency DiscountPrice ();

Virtual void Add (Equipment*);

Virtual void Remove (Equipment*);

Virtual Iterator<Equipment*>* Createlterator ();

protected:

Equipment (const char*);

private:

Const char* _name;
};

Related Patterns

 Often the component-parent link is used for a Chain of Responsibility

 Flyweight lets you share components, but they can no longer refer to their parents

 Iterator can be used to traverse composites.

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-IV

IV B. Tech I Semester (R16) 2019-20 9

4. Decorator

Intent

Attach additional responsibilities to an object dynamically. Decorators provide a flexible

alternative to sub classing for extending functionality.

Also Known As

Wrapper

Motivation

Sometimes we want to add responsibilities to individual objects, not to an entire class. A graphic

al user interface toolkit, for example, should l et you add properties like borders or behaviors like

scrolling to any user interface component.

Applicability: Use Decorator

 To add responsibilities to individual objects dynamically and transparently, that is,

without affecting other objects.

 For responsibilities that can be withdrawn.

Structure

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-IV

IV B. Tech I Semester (R16) 2019-20 10

Participants

 Component

 ConcreteComponent

 Decorator

 ConcreteDecorator

Collaborations

 Decorator forwards requests to its Component object. It may optionally perform

additional operations before and after forwarding the request.

Consequences: The Decorator pattern has at least two key benefits and two liabilities:

1. More flexibility than static inheritance.

2. 2. Avoids feature-laden classes high up in the hierarchy.

Implementation: Several issues should be considered when applying the Decorator pattern

1. Interface conformance. A decorator object's interface must conform to the interface of the

component it decorates.

2. Omitting the abstract Decorator class

Sample Code

Class VisualComponent

{

public:

VisualComponent ();

Virtual void Draw ();

Virtual void Resize ();

};

Class Decorator: public VisualComponent

{

public:

Decorator (VisualComponent*);

Virtual void Draw ();

Virtual void Resize ();

private:

VisualComponent* _component;

};

Related Patterns

 Adapter a decorator is different from an adapter in that a decorator only changes an

object's responsibilities, not its interface; an adapter will give an object a completely new

interface.

 Composite: A decorator can be viewed as a degenerate composite with only one

component.

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-IV

IV B. Tech I Semester (R16) 2019-20 11

5. Façade

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-IV

IV B. Tech I Semester (R16) 2019-20 12

6. Flyweight

Intent

Use sharing to support large numbers of fine-grained objects efficiently.

Motivation

Some applications could benefit from using objects throughout their design, but a naive implementation

would be prohibitively expensive. For example, most document editor implementations have text

formatting and editing facilities that are modularized to some extent. Object-oriented document editors

typically use objects to represent embedded elements like tables and figures.

A flyweight is a shared object th at c an be used in multiple contexts simultaneously. The flyweight acts

as an independent object in each context—it's indistinguishable from an instance of the object that's not

shared. Flyweights cannot make assumptions about the context in which they operate. The key concept

here is the distinction between intrinsic and extrinsic state. Intrinsic state is stored in the flyweight; it

consists of information that's independent of the flyweight's context, thereby making it sharable. Extrinsic

state depends on and varies with the flyweight's context and therefore can't be shared. Client objects are

responsible for passing extrinsic state to the flyweight when it needs it.

Applicability

The Flyweight pattern's effectiveness depends heavily on how and where it's used. Apply the Flyweight

pattern when all of the following are true:

 An application uses a large number of objects.

 Storage costs are high because of the sheer quantity of objects

 Most object state can be made extrinsic.

 Many groups of objects may be replaced by relatively few shared objects once extrinsic state is

removed.

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-IV

IV B. Tech I Semester (R16) 2019-20 13

Structure

Participants

 Flyweight, ConcreteFlyweight , UnsharedConcreteFlyweight, FlyweightFactory, Client

Collaborations

 State that a flyweight needs to function must be characterized as either intrinsic or extrinsic.

Intrinsic state is stored in the ConcreteFlyweight object; extrinsic state is stored or computed by

Client objects. Clients pass this state to the flyweight when they invoke its operations.

 Clients should n ot instantiate ConcreteFlyweights directly. Clients must obtain

ConcreteFlyweight objects exclusively from the FlyweightFactory object to ensure they are

shared properly.

Consequences

 The reduction in the total number f instances t hat comes from sharing

 The amount of intrinsic state per object

 Whether extrinsic state is computed or stored

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-IV

IV B. Tech I Semester (R16) 2019-20 14

Implementation: Consider the following issues when implementing the Flyweight pattern:

 Removing extrinsic state

 Managing shared objects

Sample Code

Returning to our document formatter example, we can define a Glyph base class for flyweight graphical

objects. Logically, glyphs are Composites that have graphic al attributes and ca n draw themselves. Here

we focus on just the font attribute, but the same approach can be used for any other graphical attributes a

glyph might have.

Related Patterns

 The Flyweight pattern is often combined with the Composite pattern to implement a logically

hierarchical structure in terms of a directed-acyclic graph with shared leaf nodes

 It's often best to implement State and Strategy objects as flyweights

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-IV

IV B. Tech I Semester (R16) 2019-20 15

7. PROXY

Intent

Provide a surrogate or placeholder for another object to control access to it.

Also Known As

Surrogate

Motivation

One reason for controlling access to an object is to defer the full cost of its creation and initialization until

we actually need to use it. Consider a document editor that can embed graphical objects in a document.

Some graphical objects, like large raster images, ca n be expensive to create. B ut opening a document

should be fast, so we should avoid creating all the expensive objects at once when the document is

opened. This isn't necessary anyway, because not all of these objects will be visible in the document at the

same time.

Applicability

Proxy is applicable whenever there is a need for a more versatile or sophisticated reference to an object

than a simple pointer. Here are several common situations in which the Proxy pattern is applicable:

 A remote proxy provides a local representative for an object in a different address space.

 A virtual proxy creates expensive objects on demand. The ImageProxy described in the

Motivation is an example of suc h aproxy.

 A protection proxy controls access to the original object. Protection proxies are useful when

objects should have different access rights

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-IV

IV B. Tech I Semester (R16) 2019-20 16

Structure

Participants

 Proxy, Subject, RealSubject

Collaborations

• Proxy forwards requests to RealSubject when appropriate, depending on the kind of proxy

Consequences: The Proxy pattern introduces a level of indirection when accessing an object. The

additional indirection has many uses, depending on the kind of proxy:

 A remote proxy can hide the fact that an object resides in a different address space

 A virtual proxy can perform optimizations such as creating an object on demand

 Both protection proxies and smart references allow additional housekeeping tasks when an object

is accessed

Implementation: The Proxy pattern can exploit the following language features:

 Overloading the member access operator in C++. C++ supports overloading operator->, the

member access operator. Overloading this operator lets you perform additional work whenever an

object is de referenced.

Sample Code: The following code implements two kinds of proxy: the virtual proxy described in the

Motivation section, and a proxy implemented with does Not Understand

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-IV

IV B. Tech I Semester (R16) 2019-20 17

Related Patterns

 Adapter: An adapter provides a different interface to the object it adapts

 Decorator: Although decorators can have similar implementations as proxies, decorators have a

different purpose. A decorator adds one or more responsibilities to an object, whereas a proxy

controls access to an object

Frequently Asked Question

1. Write a short note on Adapter design pattern?

2. Briefly discuss about Bridge design pattern?

3. Explain the working of Composite design pattern?

4. Explain in detail about Decorator design pattern?

5. Describe the working of Façade design pattern?

6. Write about Flyweight design pattern?

7. Briefly mention about the working of PROXY design pattern?

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-V

IV B. Tech I Semester (R16) 2019-20 1

UNIT-V:

Behavioral Patterns: Chain of responsibility, command, Interpreter, iterator, mediator,

memento, observer, state strategy, template method, visitor.

Behavioral patterns are concerned with algorithms and the assignment of responsibilities

between objects. Behavioral patterns describe not just patterns of objects or classes but also the

patterns of communication between them. These patterns characterize complex control flow

that's difficult to follow at run-time.

1. Chain of responsibility

Intent

Avoid coupling the sender of a request to its receiver by giving more than one object a chance to

handle the request. Chain the receiving objects and pass the request along the chain until an

object handles it.

Motivation

Consider a context-sensitive help facility for a graphical user interface. The user can obtain help

information on any part of the interface just by clicking on it. The help that's provided depends

on the part of the interface that's selected and its context; for example, a button widget in a

dialog box might have different help information than a similar button in the main window.

To forward the request along the chain, and to ensure receivers remain implicit, each object on

the chain shares a common interface for handling requests and for accessing its successor on the

chain.

Applicability: Use Chain of Responsibility when

 More than one object may handle a request, and the handler isn't known a priori. The

handler should be ascertained automatically.

 You want to issue a request to one of several objects without specifying the receiver

explicitly.

 The set of objects that can handle a request should be specified dynamically.

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-V

IV B. Tech I Semester (R16) 2019-20 2

Structure

Participants

 Handler

 ConcreteHandler

 Client

Collaborations

• When a client issues a request, the request propagates along the chain until a ConcreteHandler

object takes responsibility for handling it.

Consequences: Chain of Responsibility has the following benefits and liabilities:

 Reduced coupling

 Added flexibility in assigning responsibilities to objects

 Receipt isn't guaranteed

Implementation: Here are implementation issues to consider in Chain of Responsibility:

1. Implementing the successor chain. There are two possible ways to implement the successor

chain:

(a) Define new links (usually in the Handler, but ConcreteHandlers could define them instead).

(b) Use existing links.

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-V

IV B. Tech I Semester (R16) 2019-20 3

Sample Code

The following example illustrates how a chain of responsibility can handle requests for an on-

line help system like the one described earlier. The help request is an explicit operation.

Related Patterns

 Chain of Responsibility is often applied in conjunction with Composite.

 There, a component's parent can act as its successor.

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-V

IV B. Tech I Semester (R16) 2019-20 4

2. COMMAND

Intent

Encapsulate a request as an object, thereby letting you parameterize clients with different

requests, queue or log requests, and support undoable operations.

Also Known As

Action, Transaction

Motivation

Sometimes it's necessary to issue requests to objects without knowing anything about the

operation being requested or the receiver of the request. For example, user interface toolkits

include objects like buttons and menus that carry out a request in response to user input.

Applicability: Use the Command pattern when you want to

 Parameterize objects by an action to perform, as Menu item objects did above. You can

express such parameterization in a procedural language with a callback function,

 Specify, queue, and execute requests at different times. A Command object can have a

lifetime independent of the original request.

 Support undo. The Command's Execute operation ca n store state for reversing its effects

in the command itself.

Structure

Participants

 Command, ConcreteCommand, Client, Invoker, Receiver

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-V

IV B. Tech I Semester (R16) 2019-20 5

Collaborations

 The client creates a ConcreteCommand object and specifies i ts receiver.

 An Invoker object stores the ConcreteCommand object.

Consequences: The Command pattern has the followin g consequences:

 Command decouples the object that invokes the operation from the one that knows how

to perform it.

 Commands are first-class objects. They can be manipulated and extended like any other

object.

Implementation: Consider the following issues when implementing the Command pattern:

 How intelligent should a command be? A command can have a wide range of abilities. At

one extreme it merely defines a binding between a receiver and the actions that carry out

the request.

 Supporting undo and redo. Commands can support undo and redo capabilities if they

provide a way to reverse their execution

Sample Code

We'll define OpenCommand, PasteCommand, and MacroCommand. First the abstract Command

class:

Related Patterns

 Composite can be used to implement MacroCommands

 Memento can keep state the command requires to undo its effect

 command that must be copied before being placed on the history list acts as a Prototype

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-V

IV B. Tech I Semester (R16) 2019-20 6

3. INTERPRETER

Intent

Given a language, define a representation of or its grammar along with an interpreter that uses

the representation to interpret sentences in the language.

Motivation

If a particular kind of problem occurs often enough, then it might be worthwhile to express

instances of the problem as sentences in a simple language. Then you can build an interpreter

that solves the problem by interpreting these sentences.

Every regular expression defined by this grammar is represented by an abstract syntax tree made

up of instances of these classes. For example, the abstract syntax tree

Applicability: Use the Interpreter pattern when there is a language to interpret, and you can

represent statements in the language as abstract syntax trees. The Interpreter pattern work s best

when the grammar is simple and efficiency is not a critical concern.

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-V

IV B. Tech I Semester (R16) 2019-20 7

Structure

Participants

 AbstractExpression, TerminalExpression, NonterminalExpression, Context, Client

Collaborations

 The client builds (or is given) the sentence as an abstract syntax tree of

NonterminalExpression and TerminalExpression instances. Then the client initializes the

context and invokes the Interpret operation.

 Each NonterminalExpression node defines Interpret in terms of Interpret on each

subexpression. The Interpret operation of each TerminalExpression defines the base case

in the recursion.

Consequences: The Interpreter pattern has the following benefits and liabilities:

 It's easy to change and extend the grammar

 Implementing the grammar is easy, too

 Complex grammars are hard to maintain

 Adding new ways to interpret expressions

Implementation: The Interpreter and Composite patterns share many implementation issues.

The following issues are specific to Interpreter:

 Creating the abstract syntax tree

 Defining the Interpret operation

 Sharing terminal symbols with the Flyweight pattern

Sample Code

Here are two example s. The first is a complete example in Smalltalk for checking whether a

sequence matches a regular expression. The second is a C++ program for evaluating Boole an

expression. The regular expression matcher tests whether a string is in the language defined by

the regular expression. The regular expression is defined by the following grammar:

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-V

IV B. Tech I Semester (R16) 2019-20 8

Related Patterns

 Composite :The abstract syntax tree is an instance of the Composite pattern

 Flyweight shows how to share terminal symbols within the abstract syntax tree

 Iterator: The interpreter can use an Iterator to traverse the structure

 Visitor can be used to maintain the behavior in each node in the abstract syntax tree in

one class

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-V

IV B. Tech I Semester (R16) 2019-20 9

4. I TERATOR

Intent

Provide a way to access the elements of an aggregate object sequentially without exposing its

underlying representation.

Also Known As

Cursor

Motivation

An aggregate object such as a list should give you a way to access its elements without exposing

its internal structure. For example, a List class would call for a Listlterator with the following

relationship between them:

Applicability: Use the Iterator pattern

 To access an aggregate object's contents without exposing its internal representation.

 To support multiple traversals of aggreg ate objects.

 To provide a uniform interfac e for traversing different aggregate structures

Structure

Participants

 Iterator, Concretelterator, Aggregate, ConcreteAggregate

Collaborations

 A Concretelterator keeps track of the current object in the aggregate and can compute the

succeeding object in the traversal.

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-V

IV B. Tech I Semester (R16) 2019-20 10

Consequences: The Iterator pattern has three important consequences:

 It supports variations in the traversal of an aggregate

 Iterators simplify the Aggregate interface.

 More than one traversal can be pending on an aggregate

Implementation

Iterator has many implementation variants and alternatives. Some important ones follow. The

trade-offs often depend on the control structures your language provides.

Sample Code: We'll look at the implementation of a simple List class, which is part of our

foundation library.

Related Patterns

 Composite: Iterators are often applied to recursive structures such as Composites

 Factory Method: Polymorphic iterators rely o n factory methods to instantiate the

appropriate Iterator subclass.

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-V

IV B. Tech I Semester (R16) 2019-20 11

5. MEDIATOR

Intent

Define an object that encapsulates how a set o f objects interact. Mediator promotes loose

coupling by keeping objects from referring to each other explicitly, and it lets you vary their

interaction independently.

Motivation

Object-oriented design encourages the distribution of behavior among objects. Such distribution

can result in an object structure with many connections between objects; in the worst case, every

object ends up knowing about every other.

For example, FontDialogDirector can be the mediator between the widgets in a dialog box. A

FontDialogDirector object knows the widgets in a dialog and coordinates their interaction. It acts

as a hub of communication for widgets:

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-V

IV B. Tech I Semester (R16) 2019-20 12

Applicability: Use the Mediator pattern when

 A set of objects communicate in well-defined but complex ways. The resulting

interdependencies are unstructured and difficult to understand.

 Reusing an object is difficult because it refers to and communicates with many other

objects.

 A behavior that's distributed between several classes should be customizable without a lot

of sub classing.

Structure

Participants

 Mediator, ConcreteMediator, Colleague classes

Collaborations

 Colleagues send and receive requests from a Mediator object. The mediator implements

the cooperative behavior by routing requests between the appropriate colleague

Consequences: The Mediator pattern has the following benefits and drawbacks:

 It limits subclassing

 It decouples colleagues

 It simplifies object protocols

Implementation: The followin g implementation issues are relevant to the Mediator pattern:

 Omitting the abstract Mediator class. There's no need to define an abstract Mediator class

when colleagues work with only one mediator. The abstract coupling that the Mediator

class provides lets colleagues work with different Mediator subclasses, and vice versa.

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-V

IV B. Tech I Semester (R16) 2019-20 13

Sample Code

We'll use a DialogDirector to implement the font dialog box shown in the Motivation. The

abstract class DialogDirector defines the interface for directors.

Related Patterns

 Facade differs from Mediator in that it abstracts a subsystem of objects to provide a more

convenient interface

 Colleagues can communicate with the mediator using the Observer (293) pattern

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-V

IV B. Tech I Semester (R16) 2019-20 14

6. MEMENTO

Intent

Without violating encapsulation, capture and externalize an object's internal state so that the

object can be restored to this state later.

Also Known As

Token

Motivation

Sometimes it's necessary to record the internal state of an object. This is required when

implementing checkpoints and undo mechanisms that let users back out of tentative operations or

recover from errors.

A well-known way to maintain connectivity relationships between objects are with a constraint-

solving system .We can encapsulate this functionality in a Constraint- Solver object.

Applicability: Use the Memento pattern when

 A snapshot of (some portion of) an object's state must be saved so that it can be restored

to that state later, and

 A direct interface to obtaining the state would expose implementation details and break

the object's encapsulation

Structure

Participants

 Memento, Originator, Caretaker

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-V

IV B. Tech I Semester (R16) 2019-20 15

Collaborations

• A caretaker requests a memento from an originator, holds it for a time, and passes its back to

the originator, as the following interaction diagram illustrates:

Consequences: The Memento pattern has several consequences:

 Preserving encapsulation boundaries

 It simplifies Originator

 Using mementos might be expensive

Implementation: Here are two issues to consider when implementing the Memento pattern:

 Language support. Mementos have two interfaces: a wide one for originators and a

narrow one for other objects.

Related Patterns

 Command: Commands can use mementos to maintain state for undoable operations

 Iterator: Mementos can be used for iteration as described earlier

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-V

IV B. Tech I Semester (R16) 2019-20 16

7. OBSERVER

Intent

Define a one-to-many dependency between objects so that when one object changes state, all its

dependents are notified and updated automatically.

Also Known As

Dependents, Publish-Subscribe

Motivation

A common side-effect of partitioning a system into a collection of cooperating classes is the need

to maintain consistency between related objects. You don't want to achieve consistency by

making the classes tightly coupled, because that reduces their reusability.

Applicability: Use the Observer pattern in any of the following situations:

 When an abstraction has two aspects, on e dependent o n the other. Encapsulating these

aspects in separate objects lets you vary and reuse them independently

 When a change to one object requires changing others, and you don't know how many

objects need to be changed

Structure

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-V

IV B. Tech I Semester (R16) 2019-20 17

Participants

 Subject, Observer, ConcreteSubject, ConcreteObserver

Collaborations

 ConcreteSubject notifies its observers whenever a change occurs that could make its

observers' state inconsistent with its own.

 After being informed of a change in the concrete subject, a ConcreteObserver object may

query the subject for information

Consequences: The Observer pattern lets you vary subjects and observers independently

 Abstract coupling between Subject and Observer

 Support for broadcast communication

 Unexpected updates

Implementation: Several issues related to the implementation of the dependency mechanism are

discussed in this section.

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-V

IV B. Tech I Semester (R16) 2019-20 18

Sample Code: An abstract class defines the Observer interface

Related Patterns

 Mediator: By encapsulating complex update semantic s, the ChangeManager acts as

mediator between subjec ts and observers.

 Singleton: The ChangeManager may use the Singleton pattern to make it unique and

globally accessible.

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-V

IV B. Tech I Semester (R16) 2019-20 19

8. STATE

Intent

Allow an object to alter its behavior when its internal state changes. The object will appear to

change its class.

Also Known As

Objects for States

Motivation

Consider a class TCP Connection that represents a network connection. A TCP Connection

object can be in one of several different states: Established, Listening Closed. When a TCP

Connection object receives requests from other objects, it responds differently depending on its

current state. For example, the effect of an Open request depends on whether the connection is in

its closed state or its Established state. The State pattern describes how TCP Connection can

exhibit different behavior in each state.

Applicability: Use the State pattern in either of the following cases:

 An object's behavior depends on its state, and it must change its behavior at run-time

depending on that state.

 Operations have large, multipart conditional statements that depend on the object's state

Structure

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-V

IV B. Tech I Semester (R16) 2019-20 20

Participants

 Context (TCPConnection)

 State (TCPState)

 ConcreteState subclasses (TCPEstablished, TCPListen, TCPClosed)

Collaborations

 Context delegates state-specific requests to the current ConcreteState object.

 A context may pass itself as an argument to the State object handling the request. This

lets the State object access the context if necessary.

Consequences: The State pattern has the following consequences

 It localizes state-specific behavior and partitions behavior for different states

 It makes state transitions explicit

 State objects can be shared

Sample Code: The following example gives the C++ code for the TCP connection example

described in the Motivation section.

Related Patterns

 The Flyweight pattern explains when and how State objects can be shared.

 State objects are often Singletons

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-V

IV B. Tech I Semester (R16) 2019-20 21

9. STRATEGY

Intent

Define a family oaflgorith ms, encapsulate each one, and make them interchangeable. Strategy

lets the algorithm vary independently from clients that use it.

Also Known As

Policy

Motivation

Many algorithms exist for breaking a stream of text into lines. Hard-wiring all such algorithms

into the classes that require them aren’t desirable for several reasons: We can avoid these

problems by defining cl asses that encapsulate different line breaking algorithms. An algorithm

that's encapsulated in this way is called a strategy.

Applicability: Use the Strategy pattern when

 Many related classes differ only in their behavior. Strategies provide a way to configure a

class with one of many behaviors.

 You need different variants of an algorithm. For example, you might define algorithms

reflecting different space/time trade-offs. Strategies can be used when these variants are

implemented as a class hierarchy of algorithms

Structure

Participants

 Strategy, ConcreteStrategy, Context

Collaborations

 Strategy and Context interact to implement the chosen algorithm

 A context forwards requests from its clients to its strategy

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-V

IV B. Tech I Semester (R16) 2019-20 22

Consequences: The Strategy pattern has the following benefits and drawbacks:

 Families of related algorithms

 An alternative to subclassing

 Strategies eliminate conditional statements

Sample Code: We'll give the high-level code for the Motivatio n example, which is based on the

implementation of Composition

Related Patterns

 Flyweight (195): Strategy objects often make good flyweights

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-V

IV B. Tech I Semester (R16) 2019-20 23

10. TEMPLATE METHOD

Intent

Define the skeleton of an algorithm in an operation, deferring some steps to subclass es.

Template Method lets subclasses redefine certain steps of an algorithm without changing the

algorithm's structure.

Motivation

Consider an application framework that provides Application and Document classes. The

Application class is responsible for opening existing documents stored in an extern al format,

such as a file. A Document object represents the information in a document once it's read from

the file.

Applicability: The Template Method pattern should be used

 To implement the invariant parts of an algorithm once and leave it up to subclasses to

implement the behavior that ca n vary.

 When common behavior among subclasses should be factored and localized in a common

class to avoid code duplication.

Structure

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-V

IV B. Tech I Semester (R16) 2019-20 24

Participants

 AbstractClass, ConcreteClass

Collaborations

 ConcreteCl ass relies on AbstractClass to implement the invariant steps of the algorithm.

Consequences

Template methods are a fundamental technique for code reuse. They are particularly important in

class libraries, because they are the means for factoring out common behavior in library classes.

Sample Code

The following C+ + example show how a parent class can enforce an invariant for its subclasses.

Known Uses

 Template methods are so fundamental that they can be found in almost every abstract

class

Related Patterns

 Factory Methods are often called by template methods.

 Strategy: Template methods use inheritance to vary part of an algorithm.

 Strategies use delegation to vary the entire algorithm.

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-V

IV B. Tech I Semester (R16) 2019-20 25

11. VISITOR

Intent

Represent an operation to be performed on the elements of an object structure. Visitor lets you

define a new operation without changing the classes of the elements on which it operates.

Motivation

Consider a compiler that represents programs as abstract syntax trees. It will need to perform

operations on abstract syntax trees for "static semantic" analyses like checking that all variables

are defined,

Applicability: Use the Visitor pattern when

 An object structure contains many classes’ of objects with differing interfaces, and you

want to perform operations on these objects that depend on their concrete classes.

 Many distinct and unrelated operations need to be performed on objects in an object

structure, and you want to avoid "polluting" their classes with these operations.

Structure

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-V

IV B. Tech I Semester (R16) 2019-20 26

Participants

 Visitor, ConcreteVisitor, Element, ConcreteElement, ObjectStructure

Collaborations

 A client that uses the Visit or pattern must create a ConcreteVisitor object and then traverse the

object structure, visiting each element with the visitor.

 When an element is visited, it calls the Visitor operation that corresponds to its class.

Consequences: Some of the benefits and liabilities of the Visit or pattern are as follows:

 Visitor make s adding new operations easy

 A visitor gathers related operations and separates unrelated ones

 Adding new ConcreteElement classes is hard

Implementation

Each object structure will have an associated Visitor class. This abstract visitor class declares a

VisitConcreteElement operation for each class of ConcreteElement defining the object structure. Each

Visit operation on the Visitor declares its argument to be a particular ConcreteElement, allowing the

Visitor to access the interface of the ConcreteElement directly. ConcreteVisitor classes override each

Visit operation to implement visitor-specific behavior for the corresponding ConcreteElement class.

Sample Code: Because visitors are usually associated with composites, we'll use the Equipment classes

defined in the Sample Code of Composite (163) to illustrate the Visitor pattern.

Related Patterns

 Composite: Visitors can be used to apply an operation over an object structure defined by the

Composite pattern

 Interpreter: Visitor may be applied to do the interpretation

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-V

IV B. Tech I Semester (R16) 2019-20 27

Frequently Asked Questions

1. Discuss in detail about Chain of responsibility design pattern?

2. Write a short note on Command design pattern?

3. Briefly explain the working of Interpreter design pattern?

4. Explain the working of Iterator design pattern?

5. Describe the working of Mediator design pattern?

6. Discuss in detail about Memento design pattern?

7. Write a short note on Observer design pattern?

8. Briefly explain the working of state strategy design pattern?

9. Explain the working of template method design pattern?

10. Describe the working of Visitor design pattern?

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-VI

IV B. Tech I Semester (R16) 2019-20 1

UNIT-VI:Case Studies

A-7E Avionics System: A Case Study in Utilizing Architectural Structures, Air Traffic Control:

A Case Study in Designing for High Availability, Flight Simulation: A Case Study in an

Architecture for Integrability, CelsiusTech: A Case Study in Product Line Development,

J2EE/EJB: A Case Study of an Industry-Standard Computing Infrastructure, The Luther

Architecture: A Case Study in Mobile Applications Using J2EE, The World Wide Web'A Case

Study in Interoperability, The Nightingale System: A Case Study in Applying the ATAM, The

NASA ECS Project:A Case Study in Applying the CBAM

1. A-7E – A case study in utilizing architectural structures

This case study of an architecture designed by engineering and specifying three specific architectural

structures: module decomposition, uses, and process. We will see how these structures complement each

other to provide a complete picture of how the system works, and we will see how certain qualities of the

system are affected by each one. Table summarizes the three structures we will discuss.

Structure Elements Relation among Elements Has Influence Over

Module

Decomposition

Modules

(implementation

units)

Is a submodule of; shares a

secret with

Ease of change

Uses Procedures Requires the correct presence

of

Ability to field subsets and develop

incrementally

Process Processes; thread

of procedures

Synchronizes with; shares

CPU with; excludes

Schedulability; achieving

performance goals through

parallelism

The system was constructed beginning in 1977 for the naval aviators who flew the A-7E aircraft and was

paid for by the U.S. Navy. The developing organization was the software engineering group at the U.S.

Naval Research Laboratory. The developers were creating the software to test their belief that certain

software engineering strategies (in this case, information hiding and cooperating sequential processes)

were appropriate for high-performance embedded real-time systems.

The architects included one of the authors of this book and one of the leaders in the development of

software engineering principles, but the architects had little experience in the avionics domain, although

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-VI

IV B. Tech I Semester (R16) 2019-20 2

they did have access to other avionics systems and to experts in avionics. There was no compiler available

for the target platform.

The following are the primary sensors the software reads and manages:

 An air probe that measures barometric pressure and air speed.

 Forward-looking radar that can be aimed in azimuth and elevation and returns the straight-line

range to the point on the ground at which it is pointed.

 A Doppler radar that reports ground speed and drift angle (the difference between the direction in

which the aircraft's nose is pointed and the direction in which it is moving over the ground).

 An inertial measurement set (IMS) that reports accelerations along each of three orthogonal axes.

The software must read these accelerations in a timely manner and integrate them over time to

derive velocities, and it must integrate the velocities over time to derive the aircraft's current

position in the physical world. It also must manage the alignment and compensate for the drift of

the axes to keep them pointed north, east, and vertical, respectively, so that the measurements

accurately correspond to the aircraft's frame of reference.

 An interface to the aircraft carrier's inertial measurement system, through which the aircraft can

compute its current position while on board a ship.

 Sensors that report which of the A-7E's six underwing bomb racks hold weapons and which of

more than 100 kinds of weapons in the aircraft's repertoire they are. The software stores large

tables of the parameters for each weapon type, which let it compute how that weapon moves

through the atmosphere in a free-fall ballistic trajectory.

 A radar altimeter that measures the distance to the ground.

2. The World Wide Web - a case study in Interoperability

The original proposal for the Web came from Tim Berners-Lee, a researcher with the European

Laboratory for Particle Physics (CERN), who observed that the several thousand researchers at CERN

formed an evolving human "web." People came and went, developed new research associations, lost old

ones, shared papers, chatted in the hallways, and so on, and Berners-Lee wanted to support this informal

web with a similar web of electronic information. In 1989, he created and circulated throughout CERN a

document entitled Information Management: A Proposal. By October of 1990 a reformulated version of

the project proposal was approved by management, the name World Wide Web was chosen, and

development began.

Figure shows the elements of the ABC as they applied to the initial proposal approved by CERN

management. The system was intended to promote interaction among CERN researchers (the end users)

within the constraints of a heterogeneous computing environment. The customer was CERN management,

and the developing organization was a lone CERN researcher. The business case made by Berners-Lee

was that the proposed system would increase communication among CERN staff. This was a very limited

proposal with very limited (and speculative) objectives. There was no way of knowing whether such a

system would, in fact, increase communication. On the other hand, the investment required by CERN to

generate and test the system was also very limited: one researcher's time for a few months.

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-VI

IV B. Tech I Semester (R16) 2019-20 3

The technical environment was familiar to those in the research community, for which the Internet had

been a mainstay since its introduction in the early 1970s. The net had weak notions of central control

(volunteer committees whose responsibilities were to set protocols for communication among different

nodes on the Internet and to charter new newsgroups) and an unregulated, "wild-west" style of

interaction, primarily through specialized newsgroups.

Hypertext systems had had an even longer history, beginning with the vision of Vannevar Bush in the

1940s. Bush's vision had been explored throughout the 1960s and 1970s and into the 1980s, with

hypertext conferences held regularly to bring researchers together. However, Bush's vision had not been

achieved on a large scale by the 1980s: The uses of hypertext were primarily limited to small-scale

documentation systems. That was to change.

The World Wide Web, as conceived and initially implemented at CERN, had several desirable qualities.

It was portable, able to interoperate with other types of computers running the same software, and was

scalable and extensible.

3. Air Traffic Control: A Case Study in Designing for High Availability

Air traffic control (ATC) is among the most demanding of all software applications. It is hard real time,

meaning that timing deadlines must be met absolutely; it is safety critical, meaning that human lives may

be lost if the system does not perform correctly; and it is highly distributed, requiring dozens of

controllers to work cooperatively to guide aircraft through the airways system. In the United States,

whose skies are filled with more commercial, private, and military aircraft than any other part of the

world, ATC is an area of intense public scrutiny. Aside from the obvious safety issues, building and

maintaining a safe, reliable airways system requires enormous expenditures of public money. ATC is a

multibillion-dollar undertaking.

\

The following Figure shows how the air traffic control system relates to the Architecture Business Cycle

(ABC). The end users are federal air traffic controllers; the customer is the Federal Aviation

Administration; and the developing organization is a large corporation that supplies many other important

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-VI

IV B. Tech I Semester (R16) 2019-20 4

software-intensive systems to the U.S. government. Factors in the technical environment include the

mandated use of Ada as the language of implementation for large government software systems and the

emergence of distributed computing as a routine way to build systems and approach fault tolerance.

Given that air traffic control is highly visible, with huge amounts of commercial, government, and civilian

interest, and given that it involves the potential loss of human life if it fails, its two most important quality

requirements are as follows:

1. Ultrahigh availability, meaning that the system is absolutely prohibited from being inoperative for

longer than very short periods. The actual availability requirement for ISSS is targeted at

0.99999, meaning that the system should be unavailable for less than 5 minutes a year. (However,

if the system is able to recover from a failure and resume operating within 10 seconds, that failure

is not counted as unavailable time.)

2. High performance, meaning that the system has to be able to process large numbers of aircraft?as

many as 2,440?without "losing" any of them. Networks have to be able to carry the

communication loads, and the software has to be able to perform its computations quickly and

predictably.

The audit assessed the architecture's ability to deliver the required performance and availability and

included modifiability exercises that walked through several change scenarios, including the following:

 Making major modifications to the M&C position's human?computer interface

 Importing third-party-developed air traffic applications into the ISSS system

 Adding new ATC views to the system

 Replacing the RS/6000 processors with a chip of similar capability

 Deleting electronic flight strips from the requirements

 Increasing the system's maximum capacity of flight tracks by 50 percent

In every case, the audit found that the ISSS software architecture had been designed so that the

modifications would be straightforward and, in some cases, almost trivial. This is a tribute to its careful

design and its explicit consideration of quality attributes and the architectural tactics to achieve them.

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-VI

IV B. Tech I Semester (R16) 2019-20 5

4. Flight Simulation: A Case Study in Architecture for Integrability

The following Figure shows a reference model for a flight simulator. The three roles we identified earlier

(air vehicle, environment, and instructor) are shown interacting with the crew and the various cueing

systems. Typically, the instructor is hosted on a different hardware platform from the air vehicle model.

The environment model may be hosted either on a separate hardware platform or with the instructor

station.

There are two fundamentally different ways of managing time in a flight simulator?periodic and event-

based?and both of these are used. Periodic time management is used in portions that must maintain real-

time performance (such as the air vehicle), and event-based time management is used in portions where

real-time performance is not critical (such as the instructor station).

Periodic Time Management

A periodic time-management scheme has a fixed (simulated) time quantum based on the frame rate. That

is the basis of scheduling the system processes. This scheme typically uses a non-pre-emptive cyclic

scheduling discipline, which proceeds by iterating through the following loop:

 Set initial simulated time.

 Iterate the next two steps until the session is complete.

1. Invoke each of the processes for a fixed (real) quantum. Each process calculates its

internal state based on the current simulated time and reports it based on the next period

of simulated time. It guarantees to complete its computation within its real-time quantum.

2. Increment simulated time by quantum.

A simulation based on the periodic management of time will be able to keep simulated time and real time

in synchronization as long as each process is able to advance its state to the next period within the time

quantum allocated to it.

Typically, this is managed by adjusting the responsibilities of the individual processes so that they are

small enough to be computed in the allocated quantum. It is the designer's responsibility to provide the

number of processors needed to ensure sufficient computational power to enable all processes to receive

their quantum of computation.

Event-Based Time Management

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-VI

IV B. Tech I Semester (R16) 2019-20 6

An event-based time-management scheme is similar to the interrupt-based scheduling used in many

operating systems. The schedule proceeds by iterating through the following loop:

 Add a simulated event to the event queue.

 While there are events remaining in the event queue,

- choose the event with the smallest (i.e., soonest) simulated time.

- set the current simulated time to the time of the chosen event.

- invoke a process for the chosen event. This process may add events to the event queue.

In this case, simulated time advances by the invoked processes placing events on the event queue and the

scheduler choosing the next event to process. In pure event-based simulations, simulated time may

progress much faster (as in a war game simulation) or much slower (as in an engineering simulation) than

real time.

The following Figure shows the air vehicle structural model with the executive pattern given in detail.

The modules in the executive are the Timeline Synchronizer, the Periodic Sequencer, the Event Handler,

and the Surrogates for other portions of the simulator.

At this point we have identified the division of functionality, its allocation to subsystems and subsystem

controllers, and the connections among subsystems. To complete the architecture, we need to do the

following:

 Identify the controller children instances for the propulsion subsystem.

 Similarly decompose the other groups, their systems, and their subsystems.

To summarize, we decomposed the air vehicle into four groups: kinetics, aircraft systems, avionics, and

environment. We then decomposed the kinetics group into four systems: airframe, propulsion, landing

gear, and flight controls. Finally, we presented a decomposition of the propulsion system into a collection

of subsystems.

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-VI

IV B. Tech I Semester (R16) 2019-20 7

5. CelsiusTech: A Case Study in Product Line Development

This case study relates the experience of CelsiusTech AB, a Swedish naval defense contractor that

successfully adopted a product line approach to building complex software-intensive systems. Called Ship

System 2000 (SS2000), their product line consists of shipboard command-and-control systems for

Scandinavian, Middle Eastern, and South Pacific navies.

This case study illustrates the entire Architecture Business Cycle (ABC), but especially shows how a

product line architecture led CelsiusTech to new business opportunities. Figure shows the roles of the

ABC stakeholders in the CelsiusTech experience.

This study focuses on CelsiusTech Systems (CelsiusTech for short), whose focus includes command,

control, and communication (C3) systems, fire control systems,[1] and electronic warfare systems for

navy, army, and air force applications. The organization has undergone several changes in ownership and

name since 1985 (see Figure 15.2). Originally Philips Elektronikindustrier AB, the division was sold to

Bofors Electronics AB in 1989 and reorganized into NobelTech AB in 1991. It was purchased by

CelsiusTech in 1993. Although senior management changed with each transaction, most of the mid-and

lower-level management and the technical staff remained, thus providing continuity and stability.

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-VI

IV B. Tech I Semester (R16) 2019-20 8

Between 1986 and 1998 CelsiusTech evolved from a defense contractor providing custom-engineered

point solutions to essentially a vendor of commercial off-the-shelf naval systems. They found the old

ways of organizational structure and management insufficient to support the emerging business model.

They also found that achieving and sustaining an effective product line was not simply a matter of the

right software and system architecture, development environment, hardware, or network. Organizational

structure, management practices, and staffing characteristics were also dramatically affected.

The architecture served as the foundation of the approach, both technically and culturally. In some sense,

it became the tangible thing whose creation and instantiation were the ultimate goal. Because of its

importance, the architecture was highly visible. A small, elite architecture team had the authority as well

as the responsibility for it. As a consequence, the architecture achieved the "conceptual integrity" cited by

[Brooks 95] as the key to any quality software venture.

Defining the architecture was only the first step in building a foundation for a long-term development

effort. Validation through prototyping and early use was also essential. When deficiencies were

uncovered, the architecture had to evolve in a smooth, controlled manner throughout initial development

and beyond. To manage this natural evolution, CelsiusTech's integration and architecture teams worked

together to prevent any designer or design team from changing critical interfaces without the architecture

team's explicit approval.

This approach had the full support of project management, and it worked because of the architecture

team's authority. The team was a centralized design authority that could not be circumvented, which

meant that conceptual integrity was maintained.

The organization necessary to create a product line is different from that needed to sustain and evolve it.

Management needs to plan for changing personnel, management, training, and organizational needs.

Architects with extensive domain knowledge and engineering skill are vital to the creation of viable

product lines. Domain experts remain in demand as new products are envisioned and product line

evolution is managed.

CelsiusTech's turnaround from one-at-a-time systems to a product line involved education and training on

the part of management and technicians. All of these are what we mean by the return cycle of the ABC.

6. J2EE/EJB: A Case Study of an Industry-Standard Computing Infrastructure

This case study presents an overview of Sun Microsystems's Java 2 Enterprise Edition (J2EE) architecture

specification, as well as an important portion of that specification, Enterprise JavaBeans (EJB). J2EE

provides a standard description of how distributed object-oriented programs written in Java should be

designed and developed and how the various Java components can communicate and interact. EJB

describes a server-side component-based programming model. Taken as a whole, J2EE also describes

various enterprise-wide services, including naming, transactions, component life cycle, and persistence,

and how these services should be uniformly provided and accessed. Finally, it describes how vendors

need to provide infrastructure services for application builders so that, as long as conformance to the

standard is achieved, the resultant application will be portable to all J2EE platforms.

J2EE/EJB is one approach to building distributed object-oriented systems. There are, of course, others.

People have been building distributed object-oriented systems using the Object Management Group's

(OMG) Common Object Request Broker Architecture (CORBA) during the last decade. In the CORBA

model, an object request broker (ORB) allows objects to publish their interfaces and allows client

programs (and perhaps other objects) to locate these remote objects anywhere on the computer network

and to request services from them. Microsoft, too, has a technology, .NET, for building distributed

systems. The .NET architecture has similar provisions for building distributed object systems for

Windows-based platforms.

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-VI

IV B. Tech I Semester (R16) 2019-20 9

We will start the chapter by looking at the business drivers that led to the creation of an industry standard

architecture for distributed systems. Then we will discuss how the J2EE/EJB architecture addresses such

needs. We will look at the typical quality requirements of Web-based applications and see how the

J2EE/EJB architecture fulfills them.

In the 1980s, the price/performance ratio for personal computers was gradually dovetailing with that of

high-end workstations and "servers." This newly available computing power and fast network technology

enabled the widespread use of distributed computing.

However, rival computer vendors kept producing competing hardware, operating systems, and network

protocols. To an end-user organization, such product differentiation presented problems in distributed

computing. Typically, organizations invested in a variety of computing platforms and had difficulty

building distributed systems on top of such a heterogeneous environment.

The Object Management Group's Common Object Request Broker Architecture was developed in the

early 1990s to counter this problem. The CORBA model provided a standard software platform on which

distributed objects could communicate and interact with each other seamlessly and transparently. In this

case, an ORB allows objects to publish their interfaces, and it allows client programs to locate them

anywhere on the computer network and to request services from them. The ABC for J2EE/EJB is shown

in Figure.

The creation of the J2EE multi-tier architecture was motivated by the business needs of Sun

Microsystems. These business needs were influenced by the lessons of the CORBA model and by the

competitive pressures of other proprietary distributed programming models, such as COM+ from

Microsoft. J2EE features a server-side component framework for building enterprise-strength server-side

Java applications, namely, Enterprise JavaBeans.

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-VI

IV B. Tech I Semester (R16) 2019-20 10

7. The Luther Architecture: A Case Study in Mobile Applications Using J2EE

The Luther architecture was designed to provide a general framework within which Inmedius

could provide customized solutions for the maintenance problems of its customers. It is based on the Java

2 Enterprise Edition (J2EE) architecture, so becomes an application of the general J2EE/EJB framework

(discussed in Chapter 16) to an environment where the end user is connected over a wireless network and

has a device with limited input/output capabilities, limited computational capabilities, or both.

The following Figure shows the Architecture Business Cycle (ABC) as it pertains to Inmedius and the

Luther architecture. The quality goals of re-usability, performance, modifiability, flexibility of the end

user device, and interoperability with standard commercial infrastructures are driven, as always, by the

business goals of the customer and the end user.

The Luther architecture was designed to meet two sets of complementary requirements. The first set

governs the applications to be built?namely, enterprise applications for field service workers. These

requirements are directly visible to customers, since failure to meet them results in applications that do

not perform according to expectations?for instance, an application that may work correctly but perform

poorly over a wireless network. The second set of requirements involves introducing a common

architecture across products. This reduces integration time, brings products to market faster, increases

product quality, eases introduction of new technologies, and brings consistency across products.

Overall, the requirements can be separated into six categories:

 Wireless access

 User interface

 Device type

 Existing procedures, business processes, and systems

 Building applications

 Distributed computing

The main architectural decision made in response to requirements was that Luther would be constructed

on top of J2EE, which has the following advantages:

 It is commercially available from a variety of vendors. Components, such as work-flow

management, that may be useful in Luther are being widely developed.

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-VI

IV B. Tech I Semester (R16) 2019-20 11

 HTTP becomes the basis of communication because it is layered on top of the TCP/IP protocol,

which in turn is supported by a variety of commercial wireless standards, such as the IEEE

802.11b. Any Web-based client can be made mobile given the appropriate wireless LAN

infrastructure. Most of the devices that must be supported by Luther can support HTTP.

 A Luther application is thin; much of its business logic is assembled from existing components, and it is

not tied to any specific user interface. Essentially, the application code contains these three things:

 Session state definition and management

 Application-specific (i.e., nonreusable) business logic

 Logic that delegates business requests to an appropriate sequence of component method

invocations

Luther is a solution that Inmedius constructed to support the rapid building of customer support systems.

It is based on J2EE. A great deal of attention has been given to developing re-usable components and

frameworks that simplify the addition of various portions, and its user interface is designed to enable

customer- as well as browser-based solutions.

Reliance on J2EE furthered the business goals of Inmedius but also introduced the necessity for additional

design decisions in terms of what was packaged as which kind of bean (or not). This is an example of the

backward flow of the ABC, emphasizing the movement away from stovepipe solutions toward common

solutions.

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-VI

IV B. Tech I Semester (R16) 2019-20 12

8. The Nightingale System: A Case Study in Applying the ATAM

A major producer of health care systems software, aimed at the hospital, clinic, and HMO markets. The

system under consideration was called Nightingale. We learned that it was a large system expected to

comprise several million lines of code and that it was well into implementation. Nightingale already had

its first customer, a hospital chain with forty-some hospitals throughout the southwestern United States.

The system would serve as the information backbone for the health care institutions in which it was

installed. It would provide data about patients' treatment history as well as track their insurance and other

payments. And it would provide a data-warehousing capability to help spot trends (such as predictors for

relapses of certain diseases). The system would produce a large number of on- demand and periodic

reports, each tailored to the institution's specific needs. For those patients making payments on their own,

it would manage the work flow associated with initiating and servicing what amounts to a loan

throughout its entire life. Further, since the system would either run (or at least be accessible) at all of the

health care institution's facilities, it had to be able to respond to a specific office's configuration needs.

Different offices might run different hardware configurations, for instance, or require different reports. A

user might travel from one site to another, and the system would have to recognize that user and his or her

specific information needs, no matter the location. Negotiations to sign a statement of work took about a

month?par for the course when legalities between two large organizations are involved? and when it was

complete we formed an evaluation team of six people, assigning roles as shown in Table.

PHASE 1: EVALUATION

As called for in phase 1, the evaluation team met with the project's decision makers. In addition to those

who had attended the kickoff meeting (the project manager, the lead architect, and the project manager for

Nightingale's kickoff customer), two lead designers participated.

Step 1: Present ATAM

The evaluation leader used our organization's standard viewgraph package that explains the method. The

hour-long presentation lays out the method's steps and phases, describes the conceptual foundations

underlying the ATAM (such as scenarios, architectural approaches, sensitivity points, and the like), and

lists the outputs that will be produced by the end of the exercise.

The decision makers were already largely familiar with ATAM, having heard it described during the

phase 0 discussions, so this step proceeded without a hitch.

Step 2: Present Business Drivers

At the evaluation, the project manager for the client organization presented the business objectives for the

Nightingale system from the development organization, as well as from organizations they hoped would

be customers for the system. For the development organization, Nightingale addressed business

requirements that included

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-VI

IV B. Tech I Semester (R16) 2019-20 13

 support for their kickoff customer's diverse uses (e.g., treatment tracking, payment histories, trend

spotting, etc.).

 creation of a new version of the system (e.g., to manage doctors' offices) that the development

organization could market to customers other than the kickoff customer.

The second business driver alerted us to the fact that this architecture was intended for an entire software

product line (see Chapter 14), not just one system.

For the kickoff customer, Nightingale was to replace the multiple existing legacy systems, which were

 old (one was more than 25 years old).

 n based on aging languages and technology (e.g., COBOL and IBM assembler).

 difficult to maintain.

 unresponsive to the current and projected business needs of the health care sites.

The kickoff customer's business requirements included

 the ability to deal with diverse cultural and regional differences.

 the ability to deal with multiple languages (especially English and Spanish) and currencies

(especially the U.S. dollar and Mexican peso).

 a new system at least as fast as any legacy system being replaced.

 a new single system combining distinct legacy financial management systems.

The business constraints for the system included

 a commitment to employees of no lost jobs via retraining of existing employees.

 the adoption of a "buy rather than build" approach to software.

 recognition that the customer's marketplace (i.e., number of competitors) had shrunk.

The technical constraints for the system included

 use of off-the-shelf software components whenever possible.

 a two-year time frame to implement the system with the replacement of physical hardware

occurring every 26 weeks.

The following quality attributes were identified as high priority:

 Performance. Health care systems require quick response times to be considered useful. The 5-

second transaction response time of the legacy system was too slow, as were the legacy response

times for online queries and reports. System throughput was also a performance concern.

 Usability. There was a high turnover of users of the system, so retraining was an important

customer issue. The new system had to be easy to learn and use.

 Maintainability. The system had to be maintainable, configurable, and extensible to support new

markets (e.g., managing doctors' offices), new customer requirements, changes in state laws and

regulations, and the needs of the different regions and cultures.

The manager identified the following quality attributes as important, but of somewhat lower priority:

 Security. The system had to provide the normal commercial level of security (e.g.,

confidentiality and data integrity) required by financial systems.

 Availability. The system had to be highly available during normal business hours.

 Scalability. The system had to scale up to meet the needs of the largest hospital customers and

down to meets the needs of the smallest walk-in clinics.

 Modularity. The developing organization was entertaining the possibility of selling not just new

versions of Nightingale but individual components of it. Providing this capability required

qualities closely related to maintainability and scalability.

 Testability and supportability. The system had to be understandable by the customer's technical

staff since employee training and retention was an issue.

Step 3: Present Architecture

During the evaluation team's interactions with the architect, before as well as during the evaluation

exercise, several views of the architecture and the architectural approaches emerged. Key insights

included the following:

 Nightingale consisted of two major subsystems: OnLine Transaction Manager (OLTM) and

Decision Support and Report Generation Manager (DSRGM). OLTM carries interactive

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-VI

IV B. Tech I Semester (R16) 2019-20 14

performance requirements, whereas DSRGM is more of a batch processing system whose tasks

are initiated periodically.

 Nightingale was built to be highly configurable.

 The OnLine Transaction Manager subsystem was strongly layered.

 Nightingale was a repository-based system; a large commercial database lay at its heart.

 Nightingale relied heavily on COTS software, including the central database, a rules engine, a

work flow engine, CORBA, a Web engine, a software distribution tool, and many others.

 Nightingale was heavily object oriented, relying on object frameworks to achieve much of its

configurability.

 The ATAM is a robust method for evaluating software architectures. It works by having project

decision makers and stakeholders articulate a precise list of quality attribute requirements (in the

form of scenarios) and by illuminating the architectural decisions relevant to carrying out each

high-priority scenario. The decisions can then be cast as risks or nonrisks to find any trouble spots

in the architecture.

 In addition to understanding what the ATAM is, it is also important to understand what it is not.

 The ATAM is not an evaluation of requirements. That is, an ATAM-based evaluation will not tell

anyone whether all of the requirements for a system will be met. It will discern whether gross

requirements are satisfiable given the current design.

 The ATAM is not a code evaluation. Because it is designed for use early in the life cycle, it

makes no assumptions about the existence of code and has no provision for code inspection.

 The ATAM does not include actual system testing. Again because the ATAM is designed for use

early in the life cycle, it makes no assumptions of the existence of a system and has no provisions

for any type of actual testing.

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-VI

IV B. Tech I Semester (R16) 2019-20 15

9. The NASA ECS Project:A Case Study in Applying the CBAM

The Earth Observing System is a constellation of NASA satellites that gathers data for the U.S. Global

Change Research Program and other scientific communities worldwide. The Earth Observing System

Data Information System (EOSDIS) Core System (ECS) collects data from various satellite downlink

stations for further processing. ECS's mission is to process the data into higher-form information and

make it available to scientists in searchable form. The goal is to provide both a common way to store (and

hence process) data and a public mechanism to introduce new data formats and processing algorithms,

thus making the information widely available.

The ECS processes an input stream of hundreds of gigabytes of raw environment-related data per day.

The computation of 250 standard "products" results in thousands of gigabytes of information that is

archived at eight data centers in the United States. The system has important performance and availability

requirements. The long-term nature of the project also makes modifiability important. In the execution of

the CBAM described next, we concentrated on analyzing the Data Access Working Group (DAWG)

portion of the ECS.

STEP 1: COLLATE SCENARIOS

Scenarios from the ATAM were collated with a set of new scenarios elicited from the assembled ECS

stakeholders. Because the stakeholders had been through an ATAM exercise, this step was relatively

straightforward. A subset of the raw scenarios put forward by the DAWG team were as shown in Table.

Note that they are not yet well formed and that some of them do not have defined responses. These issues

are resolved in step 2, when the number of scenarios is reduced.

STEP 2: REFINE SCENARIOS

The scenarios were refined, paying particular attention to precisely specifying their stimulus-response

measures. The worst-case, current-case, desired-case, and the best-case response goals for each scenario

were elicited and recorded, as shown in Table.

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-VI

IV B. Tech I Semester (R16) 2019-20 16

STEP 3: PRIORITIZE SCENARIOS

In voting on the refined representation of the scenarios, the close-knit team deviated slightly from the

method. Rather than vote individually, they chose to discuss each scenario and arrived at a determination

of its weight via consensus. The votes allocated to the entire set of scenarios were constrained to 100, as

shown in Table 12.3. Although the stakeholders were not required to make the votes multiples of 5, they

felt that this was a reasonable resolution and that more precision was neither needed nor justified

The CBAM is an iterative elicitation process combined with a decision analysis framework. It

incorporates scenarios to represent the various quality attributes. The stakeholders explore the decision

space by eliciting utility-response curves to understand how the system's utility varies with changing

attributes. The consensus basis of the method allows for active discussion and clarification amongst the

stakeholders. The traceability of the design decision permits updating and continuous improvement of the

design process over time.

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

UNIT-VI

IV B. Tech I Semester (R16) 2019-20 17

Frequently Asked Questions: Discuss the following case studies of Software Architecture

1. A-7E Avionics System: A Case Study in Utilizing Architectural Structures

2. The World Wide Web'A Case Study in Interoperability

3. Air Traffic Control: A Case Study in Designing for High Availability

4. Flight Simulation: A Case Study in an Architecture for Integrability

5. CelsiusTech: A Case Study in Product Line Development

6. J2EE/EJB: A Case Study of an Industry-Standard Computing Infrastructure

7. The Luther Architecture: A Case Study in Mobile Applications Using J2EE

8. The Nightingale System: A Case Study in Applying the ATAM

9. The NASA ECS Project:A Case Study in Applying the CBAM

